Self-assembly of H-shaped block copolymers

被引:46
|
作者
Cong, Y
Li, BY
Han, YC
Li, YG
Pan, CY
机构
[1] Chinese Acad Sci, Grad Sch, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Dept Polymer Sci & Engn, Anhua 230026, Peoples R China
关键词
D O I
10.1021/ma0515679
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We have systematically studied the effect of the solvent nature on the self-assembly of H-shaped block copolymers with a poly(ethylene glycol) backbone and polystyrene branches, i.e., (PS)(2)-PEG(PS)(2). Two copolymers with different molecular weights (MW) and compositions, copolymer 1 and copolymer 2, were used, where copolymer 2 has a higher MW and higher PEG fraction than those of copolymer 1. In nominally neutral (nonselective) solvents, it is found that very subtle variation in the solvent affinity can remarkably influence the morphologies of the films spin-coated from the corresponding solutions. For example, as the solvent was changed from PS-affinitive to PEG-affinitive, the films of copolymer 1 changed from a disordered state into PEG cylinders. In contrast, the films of copolymer 2 changed from wormlike patterns into PEG spheres. Besides, the surface morphologies also showed some dependence on the solution concentration: with decreasing concentration, the PEG cylinders were changed into PEG spheres and a disordered state. In PEG-selective solvent (e.g., acetonitrile), copolymer 2 formed typical spherical micelles. In contrast, copolymer 1 formed a mixture of spheres and cylinders, which could be transformed into vesicles and lamellae upon dilution. The polymer-solvent interactions and their effects on the copolymer chain conformation are discussed.
引用
收藏
页码:9836 / 9846
页数:11
相关论文
共 50 条
  • [31] Combining synthesis with self-assembly in block copolymers
    Wang, Muzhou
    Qiang, Zhe
    Akolawala, Sahil
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [32] Self-assembly of copolymers containing a polypeptide block
    Castelletto, V.
    Newby, G. E.
    Zhu, Z.
    Hamley, I. W.
    Noirez, L.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C230 - C230
  • [33] Synthesis and Self-Assembly of Conjugated Block Copolymers
    Xiao, Lin-Lin
    Zhou, Xu
    Yue, Kan
    Guo, Zi-Hao
    POLYMERS, 2021, 13 (01) : 1 - 20
  • [34] Phase transition and self-assembly in block copolymers
    Hashimoto, T
    MACROMOLECULAR SYMPOSIA, 2001, 174 : 69 - 83
  • [35] Self-assembly of chiral block and gradient copolymers
    Bloksma, Meta M.
    Hoeppener, Stephanie
    D'Haese, Cecile
    Kempe, Kristian
    Mansfeld, Ulrich
    Paulus, Renzo M.
    Gohy, Jean-Francois
    Schubert, Ulrich S.
    Hoogenboom, Richard
    SOFT MATTER, 2012, 8 (01) : 165 - 172
  • [36] Controlling the self-assembly of functional block copolymers
    Campos, Luis M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [37] Limits of Directed Self-Assembly in Block Copolymers
    Gadelrab, Karim R.
    Ding, Yi
    Pablo-Pedro, Ricardo
    Chen, Hsieh
    Gotrik, Kevin W.
    Tempel, David G.
    Ross, Caroline A.
    Alexander-Katz, Alfredo
    NANO LETTERS, 2018, 18 (06) : 3766 - 3772
  • [38] Organoboron block copolymers: Synthesis and self-assembly
    Cui, Chengzhong
    Jaekle, Frieder
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [39] Controlling the self-assembly of polyelectrolyte block copolymers
    Campos, Luis M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [40] Orthogonal Self-Assembly in Folding Block Copolymers
    Hosono, Nobuhiko
    Gillissen, Martijn A. J.
    Li, Yuanchao
    Sheiko, Sergei S.
    Palmans, Anja R. A.
    Meijer, E. W.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (01) : 501 - 510