Personalizing Search Results Using Hierarchical RNN with Query-aware Attention
被引:46
|
作者:
Ge, Songwei
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Sch Informat, Beijing, Peoples R China
Beijing Inst Technol, Natl Engn Lab Big Data Syst Software, Beijing, Peoples R ChinaRenmin Univ China, Sch Informat, Beijing, Peoples R China
Ge, Songwei
[1
,4
]
Dou, Zhicheng
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Sch Informat, Beijing, Peoples R China
Beijing Key Lab Big Data Management & Anal Method, Beijing, Peoples R China
Beijing Inst Technol, Natl Engn Lab Big Data Syst Software, Beijing, Peoples R ChinaRenmin Univ China, Sch Informat, Beijing, Peoples R China
Dou, Zhicheng
[1
,3
,4
]
Jiang, Zhengbao
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Sch Informat, Beijing, Peoples R China
Beijing Key Lab Big Data Management & Anal Method, Beijing, Peoples R ChinaRenmin Univ China, Sch Informat, Beijing, Peoples R China
Jiang, Zhengbao
[1
,3
]
Nie, Jian-Yun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montreal, DIRO, Montreal, PQ, CanadaRenmin Univ China, Sch Informat, Beijing, Peoples R China
Nie, Jian-Yun
[2
]
Wen, Ji-Rong
论文数: 0引用数: 0
h-index: 0
机构:
Renmin Univ China, Sch Informat, Beijing, Peoples R China
Beijing Key Lab Big Data Management & Anal Method, Beijing, Peoples R China
MOE, Key Lab Data Engn & Knowledge Engn, Beijing, Peoples R ChinaRenmin Univ China, Sch Informat, Beijing, Peoples R China
Wen, Ji-Rong
[1
,3
,5
]
机构:
[1] Renmin Univ China, Sch Informat, Beijing, Peoples R China
[2] Univ Montreal, DIRO, Montreal, PQ, Canada
[3] Beijing Key Lab Big Data Management & Anal Method, Beijing, Peoples R China
[4] Beijing Inst Technol, Natl Engn Lab Big Data Syst Software, Beijing, Peoples R China
[5] MOE, Key Lab Data Engn & Knowledge Engn, Beijing, Peoples R China
来源:
CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT
|
2018年
Search results personalization has become an effective way to improve the quality of search engines. Previous studies extracted information such as past clicks, user topical interests, query click entropy and so on to tailor the original ranking. However, few studies have taken into account the sequential information underlying previous queries and sessions. Intuitively, the order of issued queries is important in inferring the real user interests. And more recent sessions should provide more reliable personal signals than older sessions. In addition, the previous search history and user behaviors should influence the personalization of the current query depending on their relatedness. To implement these intuitions, in this paper we employ a hierarchical recurrent neural network to exploit such sequential information and automatically generate user profile from historical data. We propose a query-aware attention model to generate a dynamic user profile based on the input query. Significant improvement is observed in the experiment with data from a commercial search engine when compared with several traditional personalization models. Our analysis reveals that the attention model is able to attribute higher weights to more related past sessions after fine training.
机构:
Univ Malaysia Pahang, Fac Comp, Kuantan 26300, Pahang, Malaysia
Univ Malaysia Pahang UMP, IBM Ctr Excellence, Ctr Software Dev & Integrated Comp, Kuantan 26300, Pahang, MalaysiaUniv Malaysia Pahang, Fac Comp, Kuantan 26300, Pahang, Malaysia
Islam, Md Shofiqul
Hasan, Khondokar Fida
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol QUT, Sch Comp Sci, 2 George St, Brisbane 4000, AustraliaUniv Malaysia Pahang, Fac Comp, Kuantan 26300, Pahang, Malaysia
Hasan, Khondokar Fida
Sultana, Sunjida
论文数: 0引用数: 0
h-index: 0
机构:
Islamic Univ, Dept Comp Sci & Engn, Kushtia 7600, BangladeshUniv Malaysia Pahang, Fac Comp, Kuantan 26300, Pahang, Malaysia
Sultana, Sunjida
Uddin, Shahadat
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Fac Engn, Sch Project Management, Sydney, AustraliaUniv Malaysia Pahang, Fac Comp, Kuantan 26300, Pahang, Malaysia
Uddin, Shahadat
Lio', Pietro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Dept Comp Sci & Technol, Cambridge, EnglandUniv Malaysia Pahang, Fac Comp, Kuantan 26300, Pahang, Malaysia
Lio', Pietro
Quinn, Julian M. W.
论文数: 0引用数: 0
h-index: 0
机构:
Garvan Inst Med Res, Bone Res Grp, Darlinghurst, NSW, AustraliaUniv Malaysia Pahang, Fac Comp, Kuantan 26300, Pahang, Malaysia
Quinn, Julian M. W.
Moni, Mohammad Ali
论文数: 0引用数: 0
h-index: 0
机构:
Univ Queensland St Lucia, Fac Hlth & Behav Sci, Sch Hlth & Rehabil Sci, Artificial Intelligence & Data Sci, St Lucia, Qld 4072, AustraliaUniv Malaysia Pahang, Fac Comp, Kuantan 26300, Pahang, Malaysia