Estimating affine-invariant structures on triangle meshes

被引:4
|
作者
Vieira, Thales [1 ]
Martinez, Dimas [2 ]
Andrade, Maria [3 ]
Lewiner, Thomas [4 ]
机构
[1] Univ Fed Alagoas, Inst Math, Maceio, Brazil
[2] Univ Fed Amazonas, Dept Math, Manaus, Amazonas, Brazil
[3] Univ Fed Sergipe, Dept Math, Sao Cristovao, Brazil
[4] Ecole Polytech, Paris, France
来源
COMPUTERS & GRAPHICS-UK | 2016年 / 60卷
关键词
Affine geometry; Invariant measures; Affine invariance; Equi-affine transformations; 3D SHAPE RETRIEVAL; CURVATURE; GEOMETRY;
D O I
10.1016/j.cag.2016.07.008
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Affine invariant measures are powerful tools to develop robust shape descriptors that can be applied, for example, to shape matching, shape retrieval, or symmetry detection problems. In this work we introduce estimators for the affine structure of surfaces represented by triangle meshes, i.e. affine co-normal and normal vectors, affine curvature tensors, affine mean and Gaussian curvatures, and affine principal directions and curvatures. The proposed method estimates the affine normal using a finite differences scheme together with a least-squares approximation, followed by a weighted average strategy to approach discrete affine curvature tensors. When compared to the exact geometric measures of analytic models, experiments on regular meshes obtain small error, which decreases for finer meshes, and outperforms the state-of-the-art method in some cases. Experiments to evaluate affine invariance show that the difference between measures before and after equi-affine transformations remains small even after large deformations. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 50 条
  • [11] Estimating the diameter of the space of plane convex figures with respect to an affine-invariant metric
    Makeev V.V.
    Journal of Mathematical Sciences, 2007, 140 (4) : 529 - 534
  • [12] Efficient Affine-Invariant Similarity Retrieval
    Haesevoets, Sofie
    Kuijpers, Bart
    Revesz, Peter
    GMAI 2007: GEOMETRIC MODELING AND IMAGING, PROCEEDINGS, 2007, : 99 - +
  • [13] Affine-invariant WENO weights and operator
    Wang, Bao-Shan
    Don, Wai Sun
    APPLIED NUMERICAL MATHEMATICS, 2022, 181 : 630 - 646
  • [14] On the automorphism groups of affine-invariant codes
    Berger, Thierry P.
    Designs, Codes, and Cryptography, 1996, 7 (03):
  • [15] QUANTUM DUADIC AND AFFINE-INVARIANT CODES
    Guenda, Kenza
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (01) : 373 - 384
  • [16] Isotropic PCA and Affine-Invariant Clustering
    Brubaker, S. Charles
    Vempala, Santosh S.
    PROCEEDINGS OF THE 49TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2008, : 551 - 560
  • [17] Distributed Affine-Invariant MCMC Sampler
    Nemeth, Balazs
    Haber, Tom
    Liesenborgs, Jori
    Lamotte, Wim
    2017 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2017, : 520 - 524
  • [18] Decoding of Lifted Affine-Invariant Codes
    Holzbaur, Lukas
    Polyanskii, Nikita
    2020 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [19] A triangle-based logic for affine-invariant querying of two-dimensional spatial data
    Haesevoets, S
    CONSTRAINT DATABASES, PROCEEDINGS, 2004, 3074 : 52 - 73
  • [20] PERMUTATION GROUP OF AFFINE-INVARIANT CODES
    BERGER, TP
    CHARPIN, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (10): : 1383 - 1387