Estimating affine-invariant structures on triangle meshes

被引:4
|
作者
Vieira, Thales [1 ]
Martinez, Dimas [2 ]
Andrade, Maria [3 ]
Lewiner, Thomas [4 ]
机构
[1] Univ Fed Alagoas, Inst Math, Maceio, Brazil
[2] Univ Fed Amazonas, Dept Math, Manaus, Amazonas, Brazil
[3] Univ Fed Sergipe, Dept Math, Sao Cristovao, Brazil
[4] Ecole Polytech, Paris, France
来源
COMPUTERS & GRAPHICS-UK | 2016年 / 60卷
关键词
Affine geometry; Invariant measures; Affine invariance; Equi-affine transformations; 3D SHAPE RETRIEVAL; CURVATURE; GEOMETRY;
D O I
10.1016/j.cag.2016.07.008
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Affine invariant measures are powerful tools to develop robust shape descriptors that can be applied, for example, to shape matching, shape retrieval, or symmetry detection problems. In this work we introduce estimators for the affine structure of surfaces represented by triangle meshes, i.e. affine co-normal and normal vectors, affine curvature tensors, affine mean and Gaussian curvatures, and affine principal directions and curvatures. The proposed method estimates the affine normal using a finite differences scheme together with a least-squares approximation, followed by a weighted average strategy to approach discrete affine curvature tensors. When compared to the exact geometric measures of analytic models, experiments on regular meshes obtain small error, which decreases for finer meshes, and outperforms the state-of-the-art method in some cases. Experiments to evaluate affine invariance show that the difference between measures before and after equi-affine transformations remains small even after large deformations. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 50 条
  • [1] A Simple Affine-Invariant Spline Interpolation over Triangular Meshes
    Stacho, Laszlo L.
    MATHEMATICS, 2022, 10 (05)
  • [2] Estimating the distance from testable affine-invariant properties
    Hatami, Hamed
    Lovett, Shachar
    2013 IEEE 54TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2013, : 237 - 242
  • [3] Group code structures of affine-invariant codes
    Joaquin Bernal, Jose
    del Rio, Angel
    Simon, Juan Jacobo
    JOURNAL OF ALGEBRA, 2011, 325 (01) : 269 - 281
  • [4] Affine-invariant querying of spatial data using a triangle-based logic
    Haesevoets, Sofie
    Kuijpers, Bart
    Revesz, Peter Z.
    GEOINFORMATICA, 2020, 24 (04) : 849 - 879
  • [5] Affine-invariant querying of spatial data using a triangle-based logic
    Sofie Haesevoets
    Bart Kuijpers
    Peter Z. Revesz
    GeoInformatica, 2020, 24 : 849 - 879
  • [6] Affine-invariant curve matching
    Zuliani, M
    Bhagavathy, S
    Manjunath, BS
    Kenney, CS
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 3041 - 3044
  • [7] Affine-Invariant Midrange Statistics
    Mostajeran, Cyrus
    Grussler, Christian
    Sepulchre, Rodolphe
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 494 - 501
  • [8] AFFINE-INVARIANT SCENE CATEGORIZATION
    Wei, Xue
    Phung, Son Lam
    Bouzerdoum, Abdesselam
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1031 - 1035
  • [9] Affine-invariant texture classification
    Chetverikov, D
    Földvári, Z
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 889 - 892
  • [10] THE DIMENSION OF AFFINE-INVARIANT FRACTALS
    FALCONER, KJ
    MARSH, DT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (03): : L121 - L125