共 50 条
Surface modification of polyvinylidene fluoride (PVDF) membrane via radiation grafting: novel mechanisms underlying the interesting enhanced membrane performance
被引:62
|作者:
Shen, Liguo
[1
]
Feng, Shushu
[1
]
Li, Jianxi
[2
]
Chen, Jianrong
[1
]
Li, Fengquan
[1
]
Lin, Hongjun
[1
]
Yu, Genying
[1
]
机构:
[1] Zhejiang Normal Univ, Coll Geog & Environm Sci, Jinhua 321004, Peoples R China
[2] CGN Natl R & D Ctr, Life Evaluat & Management Technol Nonmet Mat Lab, Suzhou 215400, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
ANTIFOULING MICROFILTRATION MEMBRANES;
POLYETHERSULFONE MEMBRANES;
POLYPROPYLENE MEMBRANE;
WATER-TREATMENT;
ULTRAFILTRATION;
POLYMERIZATION;
COPOLYMERIZATION;
LAYER;
ACID;
D O I:
10.1038/s41598-017-02605-3
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
This study provided the first attempt of grafting hydrophobic polyvinylidene fluoride (PVDF) membrane with hydrophilic hydroxyethyl acrylate (HEA) monomer via a radiation grafting method. This grafted membrane showed an enhanced hydrophilicity (10 degrees decrease of water contact angle), water content ratio, settling ability and wettability compared to the control membrane. Interestingly, filtration tests showed an improved dependence of water flux of the grafted membrane on the solution pH in the acidic stage. Atomic force microscopy (AFM) analysis provided in-situ evidence that the reduced surface pore size of the grafted membrane with the solution pH governed such a dependence. It was proposed that, the reduced surface pore size was caused by the swelling of the grafted chain matrix, with the pH increase due to the chemical potential change. It was found that the grafted membrane showed a lower relative flux decreasing rate than the control membrane. Moreover, flux of the bovine serum albumin (BSA) solution was noticeably larger than that of pure water for the grafted membrane. Higher BSA flux than water flux can be explained by the effects of electric double layer compression on the polymeric swelling. This study not only provided a pH-sensitive PVDF membrane potentially useful for various applications, but also proposed novel mechanisms underlying the enhanced performance of the grafted membrane.
引用
收藏
页数:13
相关论文