Nonparaxial Propagation of Vectorial Elliptical Gaussian Beams

被引:2
|
作者
Wang Xun [1 ]
Huang Kelin [1 ]
Liu Zhirong [1 ]
Zhao Kangyi [1 ]
机构
[1] East China Jiaotong Univ, Dept Appl Phys, Nanchang 330013, Jiangxi, Peoples R China
基金
美国国家科学基金会;
关键词
EQUATION;
D O I
10.1155/2016/6427141
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Based on the vectorial Rayleigh-Sommerfeld diffraction integral formulae, analytical expressions for a vectorial elliptical Gaussian beam's nonparaxial propagating in free space are derived and used to investigate target beam's propagation properties. As a special case of nonparaxial propagation, the target beam's paraxial propagation has also been examined. The relationship of vectorial elliptical Gaussian beam's intensity distribution and nonparaxial effect with elliptic coefficient alpha and waist width related parameter f(omega) has been analyzed. Results show that no matter what value of elliptic coefficient alpha is, when parameter f(omega) is large, nonparaxial conclusions of elliptical Gaussian beam should be adopted; while parameter f(omega) is small, the paraxial approximation of elliptical Gaussian beam is effective. In addition, the peak intensity value of elliptical Gaussian beam decreases with increasing the propagation distance whether parameter f(omega) is large or small, and the larger the elliptic coefficient alpha is, the faster the peak intensity value decreases. These characteristics of vectorial elliptical Gaussian beam might find applications in modern optics.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Partially coherent vectorial nonparaxial beams
    Duan, KL
    Lü, B
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (10) : 1924 - 1932
  • [32] Vectorial structure of nonparaxial electromagnetic beams
    Martínez-Herrero, Rosario
    Mejías, Pedro M.
    Bosch, Salvador
    Carnicer, Arturo
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18 (07): : 1678 - 1680
  • [33] Vectorial structure of nonparaxial electromagnetic beams
    Martínez-Herrero, R
    Mejías, PM
    Bosch, S
    Carnicer, A
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (07) : 1678 - 1680
  • [34] The Beam Propagation Factor of Nonparaxial Truncated Flattened Gaussian Beams
    Xiaoping Kang
    Baida Lü
    Optical and Quantum Electronics, 2006, 38 : 547 - 556
  • [35] NONPARAXIAL PROPAGATION OF GAUSSIAN BEAMS ON THE ANGLE TO THE AXIS OF THE ANISOTROPIC CRYSTAL
    Khonina, S. N.
    Zoteeva, O. V.
    Kharitonov, S. I.
    COMPUTER OPTICS, 2012, 36 (03) : 346 - 356
  • [36] The beam propagation factor of nonparaxial truncated flattened Gaussian beams
    Kang, XP
    Lü, B
    OPTICAL AND QUANTUM ELECTRONICS, 2006, 38 (07) : 547 - 556
  • [37] Nonparaxial propagation of abruptly autofocusing circular Pearcey Gaussian beams
    Chen, Xingyu
    Deng, Dongmei
    Zhuang, Jingli
    Yang, Xiangbo
    Liu, Hongzhan
    Wang, Guanghui
    APPLIED OPTICS, 2018, 57 (28) : 8418 - 8423
  • [38] Propagation of elliptical Gaussian beams modulated by an elliptical annular aperture
    Du, Xinyue
    Zhao, Daomu
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (02) : 444 - 450
  • [39] Propagation of vectorial Gaussian beams behind a circular aperture
    Zheng, Chongwei
    Zhang, Yaoju
    Wang, Ling
    OPTICS AND LASER TECHNOLOGY, 2007, 39 (03): : 598 - 604
  • [40] The second-order moment representation of nonparaxial vectorial Laguerre-Gaussian beams
    Kang Xiao-Ping
    Lu Bai-Da
    ACTA PHYSICA SINICA, 2006, 55 (09) : 4563 - 4568