On diophantine complexity and statistical zero-knowledge arguments

被引:0
|
作者
Lipmaa, H [1 ]
机构
[1] Aalto Univ, Dept CS&E, Lab Theoret CS, FIN-02015 Espoo, Finland
来源
关键词
arguments of knowledge; Diophantine complexity; integer commitment scheme; statistical zero knowledge;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show how to construct practical honest-verifier statistical zero-knowledge Diophantine arguments of knowledge (HVSZK AoK) that a committed tuple of integers belongs to an arbitrary language in bounded arithmetic. While doing this, we propose a new algorithm for computing the Lagrange representation of nonnegative integers and a new efficient representing polynomial for the exponential relation. We apply our results by constructing the most efficient known HVSZK AoK for non-negativity and the first constant-round practical HVSZK AoK for exponential relation. Finally, we propose the outsourcing model for cryptographic protocols and design communication-efficient versions of the Damgard-Jurik multi-candidate voting scheme and of the Lipmaa-Asokan-Niemi (b + 1)st-price auction scheme that work in this model.
引用
收藏
页码:398 / 415
页数:18
相关论文
共 50 条
  • [31] Nova: Recursive Zero-Knowledge Arguments from Folding Schemes
    Kothapalli, Abhiram
    Setty, Srinath
    Tzialla, Ioanna
    ADVANCES IN CRYPTOLOGY - CRYPTO 2022, PT IV, 2022, 13510 : 359 - 388
  • [32] Efficient Batch Zero-Knowledge Arguments for Low Degree Polynomials
    Bootle, Jonathan
    Groth, Jens
    PUBLIC-KEY CRYPTOGRAPHY - PKC 2018, PT II, 2018, 10770 : 561 - 588
  • [33] STATISTICALLY HIDING COMMITMENTS AND STATISTICAL ZERO-KNOWLEDGE ARGUMENTS FROM ANY ONE-WAY FUNCTION
    Haitner, Iftach
    Nguyen, Minh-Huyen
    Ong, Shien Jin
    Reingold, Omer
    Vadhan, Salil
    SIAM JOURNAL ON COMPUTING, 2009, 39 (03) : 1153 - 1218
  • [34] On the Relationship Between Statistical Zero-Knowledge and Statistical Randomized Encodings
    Applebaum, Benny
    Raykov, Pavel
    ADVANCES IN CRYPTOLOGY (CRYPTO 2016), PT III, 2016, 9816 : 449 - 477
  • [35] On the Relationship Between Statistical Zero-Knowledge and Statistical Randomized Encodings
    Benny Applebaum
    Pavel Raykov
    computational complexity, 2019, 28 : 573 - 616
  • [36] On the Relationship Between Statistical Zero-Knowledge and Statistical Randomized Encodings
    Applebaum, Benny
    Raykov, Pavel
    COMPUTATIONAL COMPLEXITY, 2019, 28 (04) : 573 - 616
  • [37] A note on the round-complexity of concurrent zero-knowledge
    Rosen, A
    ADVANCES IN CRYPTOLOGY-CRYPTO 2000, PROCEEDINGS, 2000, 1880 : 451 - 468
  • [38] On Round Optimal Statistical Zero Knowledge Arguments
    Bitansky, Nir
    Paneth, Omer
    ADVANCES IN CRYPTOLOGY - CRYPTO 2019, PT III, 2019, 11694 : 128 - 156
  • [39] Commitments with Efficient Zero-Knowledge Arguments from Subset Sum Problems
    Maire, Jules
    Vergnaud, Damien
    COMPUTER SECURITY - ESORICS 2023, PT I, 2024, 14344 : 189 - 208
  • [40] Lattice-based zero-knowledge arguments for additive and multiplicative relations
    Kuchta, Veronika
    Sakzad, Amin
    Steinfeld, Ron
    Liu, Joseph K.
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (05) : 925 - 963