STRUCTURE THEOREMS FOR BICOMODULE ALGEBRAS OVER QUASI-HOPF ALGEBRAS, WEAK HOPF ALGEBRAS, AND BRAIDED HOPF ALGEBRAS

被引:3
|
作者
Dello, Jeroen [1 ]
Panaite, Florin [2 ]
Van Oystaeyen, Freddy [3 ]
Zhang, Yinhuo [4 ]
机构
[1] Univ Hasselt, Dept Math & Stat, Diepenbeek, Belgium
[2] Romanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, Romania
[3] Univ Antwerp, Dept Math & Comp Sci, Antwerp, Belgium
[4] Univ Hasselt, Dept Math & Stat, Diepenbeek, Belgium
关键词
Bicomodule algebra; Braided Hopf algebra; Quasi-Hopf algebra; Weak Hopf algebra; Yetter-Drinfeld module; CROSSED-MODULES; PRODUCTS;
D O I
10.1080/00927872.2015.1094487
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a quasi-Hopf algebra, a weak Hopf algebra, or a braided Hopf algebra. Let B be an H-bicomodule algebra such that there exists a morphism of H-bicomodule algebras v : H -> B. Then we can define an object B-co(H), which is a left-left Yetter-Drinfeld module over H, having extra properties that allow to make a smash product B-co(H)#H, which is an H-bicomodule algebra, isomorphic to B.
引用
收藏
页码:4609 / 4636
页数:28
相关论文
共 50 条