New characterizations of classical orthogonal polynomials

被引:10
|
作者
Kwon, KH
Littlejohn, LL
Yoo, BH
机构
[1] KOREA ADV INST SCI & TECHNOL,DEPT MATH,TAEJON 305701,SOUTH KOREA
[2] UTAH STATE UNIV,DEPT MATH & STAT,LOGAN,UT 84322
[3] ANDONG NATL UNIV,DEPT MATH EDUC,ANDONG 760749,SOUTH KOREA
来源
关键词
D O I
10.1016/0019-3577(96)85090-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Classical orthogonal polynomials of Jacobi, Laguerre, Hermite, and Bessel are characterized as the only orthogonal polynomials (up to a linear change of variable) such that (i) (Bochner) they satisfy a second order differential equation of the form l(2)(x)y ''(x)+l(1)(x)y'(x) = lambda(n)y(x); and (ii) (Hahn) their derivatives of any fixed order are also orthogonal. Here, we give several new characterizations of classical orthogonal polynomials including extensions of the above two characterizations.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 50 条
  • [41] On extreme zeros of classical orthogonal polynomials
    Krasikov, Ilia
    J. Comput. Appl. Math., 1 (168-182):
  • [42] An extremal property of classical orthogonal polynomials
    Stepanov, VD
    DOKLADY MATHEMATICS, 2005, 72 (01) : 555 - 557
  • [43] SIMPLE GENERALIZED CLASSICAL ORTHOGONAL POLYNOMIALS
    SCHAFKE, FW
    WOLF, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1973, 262 : 339 - 355
  • [44] POSITIVE SUMS OF CLASSICAL ORTHOGONAL POLYNOMIALS
    GASPER, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A109 - A109
  • [45] Results on the associated classical orthogonal polynomials
    Lewanowicz, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 65 (1-3) : 215 - 231
  • [46] CONGRUENCE PROPERTIES OF THE CLASSICAL ORTHOGONAL POLYNOMIALS
    ALSALAM, WA
    CARLITZ, L
    DUKE MATHEMATICAL JOURNAL, 1958, 25 (01) : 1 - 9
  • [47] Classical orthogonal polynomials: dependence of parameters
    Ronveaux, A
    Zarzo, A
    Area, I
    Godoy, E
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 121 (1-2) : 95 - 112
  • [48] On extreme zeros of classical orthogonal polynomials
    Krasikov, Ilia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 193 (01) : 168 - 182
  • [49] Perturbed zeros of classical orthogonal polynomials
    Campos, RG
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 1999, 5 (01): : 143 - 153
  • [50] Point vortices and classical orthogonal polynomials
    Demina, Maria V.
    Kudryashov, Nikolai A.
    REGULAR & CHAOTIC DYNAMICS, 2012, 17 (05): : 371 - 384