Enabling Automatic Repair of Source Code Vulnerabilities Using Data-Driven Methods

被引:0
|
作者
Grishina, Anastasiia [1 ]
机构
[1] Simula Res Lab, Oslo, Norway
关键词
Automatic Program Repair; Static Analysis; Software Security; Natural Language Processing; Graph-based Machine Learning; ML4Code;
D O I
10.1145/3510454.3517063
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Users around the world rely on software-intensive systems in their day-to-day activities. These systems regularly contain bugs and security vulnerabilities. To facilitate bug fixing, data-driven models of automatic program repair use pairs of buggy and fixed code to learn transformations that fix errors in code. However, automatic repair of security vulnerabilities remains under-explored. In this work, we propose ways to improve code representations for vulnerability repair from three perspectives: input data type, data-driven models, and downstream tasks. The expected results of this work are improved code representations for automatic program repair and, specifically, fixing security vulnerabilities.
引用
收藏
页码:275 / 277
页数:3
相关论文
共 50 条
  • [21] CODE RED The Danger of Data-Driven Instruction
    Neuman, Susan B.
    EDUCATIONAL LEADERSHIP, 2016, 74 (03) : 24 - 29
  • [22] Entangled Queries: Enabling Declarative Data-Driven Coordination
    Gupta, Nitin
    Kot, Lucja
    Roy, Sudip
    Bender, Gabriel
    Gehrke, Johannes
    Koch, Christoph
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2012, 37 (03):
  • [23] Pulsar: Enabling Dynamic Data-driven IoT Applications
    Renart, Eduard
    Balouek-Thomert, Daniel
    Parashar, Manish
    2017 IEEE 2ND INTERNATIONAL WORKSHOPS ON FOUNDATIONS AND APPLICATIONS OF SELF* SYSTEMS (FAS*W), 2017, : 357 - 359
  • [24] Data-driven and Automatic Surface Texture Analysis Using Persistent Homology
    Yesilli, Melih C.
    Khasawneh, Firas A.
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1350 - 1356
  • [25] Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
    Gomez-Bombarelli, Rafael
    Wei, Jennifer N.
    Duvenaud, David
    Hernandez-Lobato, Jose Miguel
    Sanchez-Lengeling, Benjamin
    Sheberla, Dennis
    Aguilera-Iparraguirre, Jorge
    Hirzel, Timothy D.
    Adams, Ryan P.
    Aspuru-Guzik, Alan
    ACS CENTRAL SCIENCE, 2018, 4 (02) : 268 - 276
  • [26] Discriminating between cosmological models using data-driven methods
    Vilardi, S.
    Capozziello, S.
    Brescia, M.
    ASTRONOMY & ASTROPHYSICS, 2025, 695
  • [27] Data-driven recipe completion using machine learning methods
    De Clercq, Marlies
    Stock, Michiel
    De Baets, Bernard
    Waegeman, Willem
    TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2016, 49 : 1 - 13
  • [28] Surrogate Modeling of Ultrasonic Simulations Using Data-Driven Methods
    Du, Xiaosong
    Grandin, Robert
    Leifsson, Leifur
    43RD REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, 2017, 1806
  • [29] Intelligent technologies for construction machinery using data-driven methods
    Zheng, Zhe
    Wang, Fei
    Gong, Guofang
    Yang, Huayong
    Han, Dong
    AUTOMATION IN CONSTRUCTION, 2023, 147
  • [30] Drought forecasting using data-driven methods and an evolutionary algorithm
    Hosseini-Moghari S.-M.
    Araghinejad S.
    Azarnivand A.
    Modeling Earth Systems and Environment, 2017, 3 (4) : 1675 - 1689