Improving Sentiment Analysis for Social Media Applications Using an Ensemble Deep Learning Language Model

被引:45
|
作者
Alsayat, Ahmed [1 ]
机构
[1] Jouf Univ, Coll Comp & Informat Sci, Dept Comp Sci, Sakaka 72388, Saudi Arabia
关键词
Machine learning; Deep learning; Sentiment analysis; Data mining; Ensemble algorithms; Social media; Pandemic; Coronavirus; COVID-19; LSTM MODEL;
D O I
10.1007/s13369-021-06227-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As data grow rapidly on social media by users' contributions, specially with the recent coronavirus pandemic, the need to acquire knowledge of their behaviors is in high demand. The opinions behind posts on the pandemic are the scope of the tested dataset in this study. Finding the most suitable classification algorithms for this kind of data is challenging. Within this context, models of deep learning for sentiment analysis can introduce detailed representation capabilities and enhanced performance compared to existing feature-based techniques. In this paper, we focus on enhancing the performance of sentiment classification using a customized deep learning model with an advanced word embedding technique and create a long short-term memory (LSTM) network. Furthermore, we propose an ensemble model that combines our baseline classifier with other state-of-the-art classifiers used for sentiment analysis. The contributions of this paper are twofold. (1) We establish a robust framework based on word embedding and an LSTM network that learns the contextual relations among words and understands unseen or rare words in relatively emerging situations such as the coronavirus pandemic by recognizing suffixes and prefixes from training data. (2) We capture and utilize the significant differences in state-of-the-art methods by proposing a hybrid ensemble model for sentiment analysis. We conduct several experiments using our own Twitter coronavirus hashtag dataset as well as public review datasets from Amazon and Yelp. For concluding results, a statistical study is carried out indicating that the performance of these proposed models surpasses other models in terms of classification accuracy.
引用
收藏
页码:2499 / 2511
页数:13
相关论文
共 50 条
  • [31] Sentiment Analysis of Social Media Networks Using Machine Learning
    Abd El-Jawad, Mohammed H.
    Hodhod, Rania
    Omar, Yasser M. K.
    2018 14TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO), 2018, : 174 - 176
  • [32] Improving the Performance of Sentiment Analysis of Tweets Containing Fuzzy Sentiment Using the Feature Ensemble Model
    Huyen Trang Phan
    Van Cuong Tran
    Ngoc Thanh Nguyen
    Hwang, Dosam
    IEEE ACCESS, 2020, 8 : 14630 - 14641
  • [33] An Ensemble-Based Model for Sentiment Analysis of Persian Comments on Instagram Using Deep Learning Algorithms
    Eyvazi-Abdoljabbar, Soheyla
    Kim, Seongki
    Feizi-Derakhshi, Mohammad-Reza
    Farhadi, Zari
    Abdulameer Mohammed, Dheyaa
    IEEE ACCESS, 2024, 12 : 151223 - 151235
  • [34] Deep-learning-assisted business intelligence model for cryptocurrency forecasting using social media sentiment
    Yasir, Muhammad
    Attique, Muhammad
    Latif, Khalid
    Chaudhary, Ghulam Mujtaba
    Afzal, Sitara
    Ahmed, Kamran
    Shahzad, Farhan
    JOURNAL OF ENTERPRISE INFORMATION MANAGEMENT, 2023, 36 (03) : 718 - 733
  • [35] Deep Learning Model for Interpretability and Explainability of Aspect-Level Sentiment Analysis Based on Social Media
    Singh, Nikhil Kumar
    Agal, Sanjay
    Gadekallu, Thippa Reddy
    Shabaz, Mohammad
    Keshta, Ismail
    Jindal, Latika
    Soni, Mukesh
    Byeon, Haewon
    Singh, Pavitar Parkash
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, : 1 - 12
  • [36] Sentiment analysis of imbalanced datasets using BERT and ensemble stacking for deep learning
    Habbat, Nassera
    Nouri, Hicham
    Anoun, Houda
    Hassouni, Larbi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [37] Integration of deep learning techniques for sentiment and emotion analysis of social media data
    Hota H.S.
    Sharma D.K.
    Verma N.
    International Journal of Intelligent Systems Technologies and Applications, 2023, 21 (01) : 1 - 20
  • [39] Twitter sentiment analysis using ensemble of multi-channel model based on machine learning and deep learning techniques
    Tembhurne, Jitendra V.
    Lakhotia, Kirtan
    Agrawal, Anant
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, : 1045 - 1071
  • [40] RETRACTED: Sentiment Analysis of Statements on Social Media and Electronic Media Using Machine and Deep Learning Classifiers (Retracted Article)
    Goswami, Anjali
    Krishna, Muddada Murali
    Vankara, Jayavani
    Gangadharan, Syam Machinathu Parambil
    Yadav, Chandra Shekhar
    Kumar, Manoj
    Khan, Mohammad Monirujjaman
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022