Techno-economic evaluation of coal-based polygeneration systems of synthetic fuel and power with CO2 recovery

被引:67
|
作者
Lin Hu [1 ]
Jin Hongguang [1 ]
Gao Lin
Han Wei
机构
[1] Chinese Acad Sci, Inst Engn Thermophys, Grad Univ, Beijing 100190, Peoples R China
关键词
Polygeneration system; Synthetic fuel; CO2; recovery; Economic performance; NATURAL-GAS DECARBONIZATION; COMBINED CYCLES; EMISSION; PLANTS; COST;
D O I
10.1016/j.enconman.2010.06.068
中图分类号
O414.1 [热力学];
学科分类号
摘要
Being abundant of coal and short of oil and gas, China heavily depends on coal, which leads to the challenge to efficiently producing synthetic fuels based on coal with lower CO2 emission. In this paper, polygeneration systems with and without CO2 recovery are analyzed from the techno-economic viewpoint. The results show that energy penalty plays the important role in the cost penalty for CO2 recovery. With system integration, the polygeneration technology can achieve the trade-off between primary installed capital cost and fuel saving, which can effectively reduce the cost penalty for CO2 avoidance. Compared to the pulverized-coal power system and MEOH single-product system, the polygeneration system with CO2 recovery can get the cost penalty as low as 3.1 $/t-CO2. Compared to the polygeneration system without CO2 recovery, the cost penalty may be near zero. Considering the trend of learning-by-doing, products cost of the polygeneration system has double dropping potential as that of the traditional methanol production system and IGCC system. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:274 / 283
页数:10
相关论文
共 50 条
  • [31] Techno-Economic Analysis of CO2 Capture Processes from Coal-fired Power Plants
    Yun, Seokwon
    Lee, Sunghoon
    Kim, Jin-Kuk
    28TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2018, 43 : 1519 - 1520
  • [32] Techno-economic and environmental evaluation of a supercritical CO2 coal-fired circulating fluidized bed boiler power generation
    Liu, Zecheng
    Zhong, Wenqi
    Liu, Xuejiao
    Shao, Yingjuan
    ENERGY, 2023, 285
  • [33] Review and techno-economic assessment of fuel cell technologies with CO2 capture
    Slater, J. D.
    Chronopoulos, T.
    Panesar, R. S.
    Fitzgerald, F. D.
    Garcia, M.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2019, 91
  • [34] Techno-Economic Assessment of CO2-Based Power to Heat to Power Systems for Industrial Applications
    Trevisan, Silvia
    Shamsi, Syed Safeer Mehdi
    Maccarini, Simone
    Barberis, Stefano
    Guedez, Rafael
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2023, 145 (12):
  • [35] Techno-economic analysis for the integration of a power to fuel system with a CCS coal power plant
    Bellotti, D.
    Sorce, A.
    Rivarolo, M.
    Magistri, L.
    JOURNAL OF CO2 UTILIZATION, 2019, 33 : 262 - 272
  • [36] Techno-economic assessment of CO2 capture integrated coal-fired power plant with energetic analysis
    Yun, Seokwon
    Lee, Sunghoon
    Jang, Mun-Gi
    Kim, Jin-Kuk
    Energy, 2021, 236
  • [37] Techno-economic assessment of CO2 capture integrated coal-fired power plant with energetic analysis
    Yun, Seokwon
    Lee, Sunghoon
    Jang, Mun-Gi
    Kim, Jin-Kuk
    ENERGY, 2021, 236
  • [38] Deployment of integrated Power-to-X and CO2 utilization systems: Techno-economic assessment of synthetic natural gas and methanol cases
    Cormos, Calin-Cristian
    APPLIED THERMAL ENGINEERING, 2023, 231
  • [39] Techno-economic assessment of CO2 capture retrofit to existing power plants
    Gibbins, Jon
    Chalmers, Hannah
    Lucquiaud, Mathieu
    Li, Jia
    McGlashan, Niall
    Liang, Xi
    Davison, John
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1835 - 1842
  • [40] Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes
    Yang, Qingchun
    Zhu, Shun
    Yang, Qing
    Huang, Weiqing
    Yu, Peijing
    Zhang, Dawei
    Wang, Zhongbing
    ENERGY CONVERSION AND MANAGEMENT, 2019, 198