Non-Gaussian morphology on large scales:: Minkowski functionals of the REFLEX cluster catalogue

被引:44
|
作者
Kerscher, M
Mecke, K
Schuecker, P
Böhringer, H
Guzzo, L
Collins, CA
Schindler, S
De Grandi, S
Cruddace, R
机构
[1] Univ Munich, Sekt Phys, D-80333 Munich, Germany
[2] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[3] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[4] Univ Stuttgart, Fak Phys, Inst Theoret & Angew Phys, D-70569 Stuttgart, Germany
[5] Max Planck Inst Extraterr Phys, D-85740 Garching, Germany
[6] Osserv Astron Brera, Merate, Italy
[7] Liverpool John Moores Univ, Liverpool L3 5UX, Merseyside, England
[8] USN, Res Lab, Washington, DC 20375 USA
关键词
large-scale structure of Universe; galaxies : clusters : general; cosmology : observation; cosmology : theory;
D O I
10.1051/0004-6361:20011063
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In order to quantify higher-order correlations of the galaxy cluster distribution we use a complete family of additive measures which give scale-dependent morphological information. Minkowski functionals can be expressed analytically in terms of integrals of n-point correlation functions. They can be compared with measured Minkowski functionals of volume limited samples extracted from the Reflex survey. We find significant non-Gaussian features in the large-scale spatial distribution of galaxy clusters. A Gauss-Poisson process can be excluded as a viable model for the distribution of galaxy clusters at the significance level of 95%.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] SKEWNESS IN LARGE-SCALE STRUCTURE AND NON-GAUSSIAN INITIAL CONDITIONS
    FRY, JN
    SCHERRER, RJ
    ASTROPHYSICAL JOURNAL, 1994, 429 (01): : 36 - 42
  • [32] SUBOPTIMAL PROCESSING EFFICIENCY FOR RADAR SIGNAL IN LARGE NON-GAUSSIAN INTERFERENCE
    AVDEYEV, VV
    PAGSHIN, YN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1985, 28 (09): : 30 - 33
  • [33] Large non-Gaussian halo bias from single field inflation
    Agullo, Ivan
    Shandera, Sarah
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (09):
  • [34] Spatial data fusion for large non-Gaussian remote sensing datasets
    Shi, Hongxiang
    Kang, Emily L.
    STAT, 2017, 6 (01): : 390 - 404
  • [36] Large deviations for fractional volatility models with non-Gaussian volatility driver
    Gerhold, Stefan
    Gerstenecker, Christoph
    Gulisashvili, Archil
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 142 (142) : 580 - 600
  • [37] Flexible basis representations for modeling large non-Gaussian spatial data
    MacDonald, Remy
    Lee, Benjamin Seiyon
    SPATIAL STATISTICS, 2024, 62
  • [38] Large-scale clustering from non-Gaussian texture models
    Gaztanaga, E
    Mahonen, P
    ASTROPHYSICAL JOURNAL, 1996, 462 (01): : L1 - L4
  • [39] The large-scale structure from non-Gaussian primordial perturbations
    Pena, G. A.
    Candlish, G. N.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 511 (02) : 2259 - 2273
  • [40] Quantum properties of a non-Gaussian state in the large-N approximation
    Gautier, F.
    Serreau, J.
    PHYSICAL REVIEW D, 2011, 83 (12):