Characterizations of the Symmetric T(θ, q)-Classical Orthogonal q-Polynomials

被引:0
|
作者
Bouras, B. [1 ]
Habbachi, Y. [1 ]
Marcellan, F. [2 ]
机构
[1] Gabes Univ, Coll Sci, Dept Math, Gabes, Tunisia
[2] Univ Carlos III Madrid, Dept Matemat, Madrid, Spain
关键词
Orthogonal polynomials; symmetric polynomials; q-Dunkl-classical orthogonal polynomials; regular linear functionals;
D O I
10.1007/s00009-022-01986-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give two characterizations for symmetric q-Dunkl-classical orthogonal polynomials. The first one is related to a spectral problem for a second-order linear q-difference differential operator. The second one is given by a distribution equation of Pearson type fulfilled by their corresponding linear functionals. Then, we show that the q(2)-analogue of generalized Hermite and the q(2)-analogue of generalized Gegenbauer polynomials are, up a dilation, the only symmetric q-Dunkl-classical orthogonal polynomials.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Some Generating Functions for q-Polynomials
    Cohl, Howard S.
    Costas-Santos, Roberto S.
    Wakhare, Tanay V.
    SYMMETRY-BASEL, 2018, 10 (12):
  • [42] ABEL Q-POLYNOMIALS ON K BODY
    CARCANAG.J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1967, 265 (17): : 496 - &
  • [43] ON THE NATURAL q-ANALOGUES OF THE CLASSICAL ORTHOGONAL POLYNOMIALS
    Kheriji, L.
    Maroni, P.
    EURASIAN MATHEMATICAL JOURNAL, 2013, 4 (02): : 82 - 103
  • [44] On (p, q)-classical orthogonal polynomials and their characterization theorems
    Masjed-Jamei, M.
    Soleyman, F.
    Area, I.
    Nieto, J. J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [45] On a structure formula for classical q-orthogonal polynomials
    Koepf, W
    Schmersau, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 136 (1-2) : 99 - 107
  • [46] Characterizations of the Symmetric T(θ,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{(\theta , q)}$$\end{document}-Classical Orthogonal q-Polynomials
    B. Bouras
    Y. Habbachi
    F. Marcellán
    Mediterranean Journal of Mathematics, 2022, 19 (2)
  • [47] Symmetric Semi-classical Orthogonal Polynomials of Class One on q-Quadratic Lattices
    Filipuk, Galina
    Rebocho, Maria das Neves
    FORMAL AND ANALYTIC SOLUTIONS OF DIFF. EQUATIONS, 2018, 256 : 251 - 261
  • [48] q-ADDITION THEOREMS FOR THE q-APPELL POLYNOMIALS AND THE ASSOCIATED CLASSES OF q-POLYNOMIALS EXPANSIONS
    Sadjang, Patrick Njionou
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (05) : 1179 - 1192
  • [49] Structure relations for q-polynomials and some applications
    Ismail, Mourad E. H.
    Johnston, Sarah Jane
    Mansour, Zeinab Sayed
    APPLICABLE ANALYSIS, 2011, 90 (3-4) : 747 - 767
  • [50] APPLICATIONS OF THE OPERATOR r?s IN q-POLYNOMIALS
    Saad, H. L.
    Hassan, H. J.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (02): : 696 - 709