Layered g-C3N4/TiO2 nanocomposites for efficient photocatalytic water splitting and CO2 reduction: a review

被引:138
|
作者
Zhang, Xiao [1 ]
Jiang, San Ping [1 ]
机构
[1] Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Perth, WA 6845, Australia
基金
澳大利亚研究理事会;
关键词
Graphitic carbon nitride/titanium oxide; nanocomposites; Photocatalysis and photocatalysts; Carbon dioxide reduction; H-2; generation; GRAPHITIC CARBON NITRIDE; ANATASE TIO2 NANOPARTICLES; REDUCED GRAPHENE OXIDE; IN-SITU SYNTHESIS; HYDROGEN EVOLUTION; POROUS G-C3N4; PHOTOELECTROCATALYTIC REDUCTION; (G-C3N4)-BASED PHOTOCATALYSTS; HETEROJUNCTION PHOTOCATALYSTS; ENERGY-CONVERSION;
D O I
10.1016/j.mtener.2021.100904
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar-driven photocatalysts for water splitting and CO2 reduction have been widely studied for dealing with environmental pollution and energy sustainability issues. Among the most promising semiconductor photocatalysts, graphitic carbon nitride (g-C3N4) and TiO2 (anatase) with band gaps of similar to 2.7 and similar to 3.2 eV, respectively, are investigated extensively. However, the high photogenerated carrier recombination efficiency of g-C3N4 and the relatively wide band gap of TiO2 (responsive to ultraviolet light only) are the factors that can lower the photocatalytic activities of the materials. Thus, one of the prevalent strategies is to construct g-C3N4/TiO2 nanocomposites to promote charge carrier separation and to improve photoabsorption in the visible region for attaining efficient utilization of solar energy in photocatalytic water splitting, CO2 reduction, and organic pollutant photodegradation. Here, a comprehensive overview is made on the exploitation of g-C3N4/TiO2 nanocomposites for photocatalytic applications, emphasizing layered heterostructures, for solar-driven H-2 generation and CO2 reduction. Challenges in resolving various issues such as low efficiency, low stability, and noble metal cocatalyst dependency, as well as band gap narrowing accompanied reduction in redox ability of the g-C3N4/TiO2 nanocomposites, are discussed. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction
    Li, Xibao
    Xiong, Jie
    Gao, Xiaoming
    Huang, Juntong
    Feng, Zhijun
    Chen, Zhi
    Zhu, Yongfa
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 802 (196-209) : 196 - 209
  • [32] Boosting the photocatalytic CO2 reduction activity of g-C3N4 by acid modification
    Li, Zhou
    Ao, Junlang
    Wang, Zhi
    Huang, Zibin
    Xu, Zhihua
    Wu, Xiaofeng
    Cheng, Zhenmin
    Lv, Kangle
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 338
  • [33] BiOCl/g-C3N4 heterojunction catalyst for efficient photocatalytic reduction of CO2 under visible light
    He Z.
    Chen J.
    Tong L.
    Tang J.
    Chen J.
    Song S.
    Song, Shuang (ss@zjut.edu.cn), 1600, Materials China (67): : 4634 - 4642
  • [34] A comparative study on the effect of different precursors for synthesis and efficient photocatalytic activity of g-C3N4/TiO2/bentonite nanocomposites
    Amit Mishra
    Akansha Mehta
    Shagun Kainth
    Soumen Basu
    Journal of Materials Science, 2018, 53 : 13126 - 13142
  • [35] A comparative study on the effect of different precursors for synthesis and efficient photocatalytic activity of g-C3N4/TiO2/bentonite nanocomposites
    Mishra, Amit
    Mehta, Akansha
    Kainth, Shagun
    Basu, Soumen
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (18) : 13126 - 13142
  • [36] A review of g-C3N4-based photocatalytic materials for photocatalytic CO2 reduction
    Tang, Jing
    Guo, Chuanyu
    Wang, Tingting
    Cheng, Xiaoli
    Huo, Lihua
    Zhang, Xianfa
    Huang, Chaobo
    Major, Zoltan
    Xu, Yingming
    CARBON NEUTRALIZATION, 2024, 3 (04): : 557 - 583
  • [37] Review of different series of MOF/g-C3N4 composites for photocatalytic hydrogen production and CO2 reduction
    Jiang, Jing-Jing
    Zhang, Feng-Jun
    Wang, Ying-Rui
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (04) : 1599 - 1609
  • [38] Review of different series of MOF/g-C3N4 composites for photocatalytic hydrogen production and CO2 reduction
    Jiang, Jing-Jing
    Zhang, Feng-Jun
    Wang, Ying-Rui
    New Journal of Chemistry, 2022, 47 (04) : 1599 - 1609
  • [39] Construction of TiO2/CuPc Heterojunctions for the Efficient Photocatalytic Reduction of CO2 with Water
    Wang, Jun
    Fu, Shuang
    Hou, Peng
    Liu, Jun
    Li, Chao
    Zhang, Hongguang
    Wang, Guowei
    MOLECULES, 2024, 29 (08):
  • [40] Construction of three-coordinated (N3C) nitrogen vacancies in g-C3N4 for efficient photocatalytic CO2 reduction
    Gong, Yuyang
    Yang, Penghui
    Ma, Dongmei
    Zhong, Junbo
    CERAMICS INTERNATIONAL, 2024, 50 (18) : 33131 - 33142