scRNASeqDB: A Database for RNA-Seq Based Gene Expression Profiles in Human Single Cells

被引:68
|
作者
Cao, Yuan [1 ]
Zhu, Junjie [2 ]
Jia, Peilin [1 ]
Zhao, Zhongming [1 ,3 ,4 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Univ Texas Hlth Sci Ctr Houston, Sch Publ Hlth, Human Genet Ctr, Houston, TX 77030 USA
[4] Vanderbilt Univ, Dept Biomed Informat, Med Ctr, Nashville, TN 37203 USA
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
single cell; RNA sequencing; database; expression profile; cell type; differential expression; PROGENITOR; STEM; TOOL;
D O I
10.3390/genes8120368
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Single-cell RNA sequencing (scRNA-Seq) is rapidly becoming a powerful tool for high-throughput transcriptomic analysis of cell states and dynamics at the single cell level. Both the number and quality of scRNA-Seq datasets have dramatically increased recently. A database that can comprehensively collect, curate, and compare expression features of scRNA-Seq data in humans has not yet been built. Here, we present scRNASeqDB, a database that includes almost all the currently available human single cell transcriptome datasets (n = 38) covering 200 human cell lines or cell types and 13,440 samples. Our online web interface allows users to rank the expression profiles of the genes of interest across different cell types. It also provides tools to query and visualize data, including Gene Ontology and pathway annotations for differentially expressed genes between cell types or groups. The scRNASeqDB is a useful resource for single cell transcriptional studies. This database is publicly available at https://bioinfo.uth.edu/scrnaseqdb/.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A model based criterion for gene expression calls using RNA-seq data
    Wagner, Guenter P.
    Kin, Koryu
    Lynch, Vincent J.
    THEORY IN BIOSCIENCES, 2013, 132 (03) : 159 - 164
  • [32] A model based criterion for gene expression calls using RNA-seq data
    Günter P. Wagner
    Koryu Kin
    Vincent J. Lynch
    Theory in Biosciences, 2013, 132 : 159 - 164
  • [33] Discovering Single Nucleotide Polymorphisms Regulating Human Gene Expression Using Allele Specific Expression from RNA-seq Data
    Kang, Eun Yong
    Martin, Lisa J.
    Mangul, Serghei
    Isvilanonda, Warin
    Zou, Jennifer
    Ben-David, Eyal
    Han, Buhm
    Lusis, Aldons J.
    Shifman, Sagiv
    Eskin, Eleazar
    GENETICS, 2016, 204 (03) : 1057 - +
  • [34] Evaluation of Normalization Methods for RNA-Seq Gene Expression Estimation
    Wu, Po-Yen
    Phan, John H.
    Zhou, Fengfeng
    Wang, May D.
    2011 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS, 2011, : 50 - 57
  • [35] Deep Learning to Analyze RNA-Seq Gene Expression Data
    Urda, D.
    Montes-Torres, J.
    Moreno, F.
    Franco, L.
    Jerez, J. M.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 50 - 59
  • [36] RNA-seq and microarray gene expression vie for toxicogenomics superiority
    Tong, W.
    TOXICOLOGY LETTERS, 2015, 238 (02) : S226 - S227
  • [37] RNA-Seq gene expression estimation with read mapping uncertainty
    Li, Bo
    Ruotti, Victor
    Stewart, Ron M.
    Thomson, James A.
    Dewey, Colin N.
    BIOINFORMATICS, 2010, 26 (04) : 493 - 500
  • [38] NK CELLS FROM CHRONIC HBV PATIENTS IN DIFFERENT CLINICAL PHASE EXHIBIT ALTERED GENE EXPRESSION PROFILES BY RNA-SEQ
    Hou, J.
    de Groen, R.
    Vanwolleghem, T.
    Van Oord, G.
    Groothuismink, Z.
    De Knegt, R.
    Boonstra, A.
    JOURNAL OF HEPATOLOGY, 2016, 64 : S384 - S385
  • [39] RNA-seq analyses of gene expression in the microsclerotia of Verticillium dahliae
    Dechassa Duressa
    Amy Anchieta
    Dongquan Chen
    Anna Klimes
    Maria D Garcia-Pedrajas
    Katherine F Dobinson
    Steven J Klosterman
    BMC Genomics, 14
  • [40] Comparison of gene expression platforms: RNA-Seq, Fluidigm, and Nanostring
    Schleifman, Erica B.
    Motlhabi, Maipelo
    Cummings, Craig
    Nakamura, Rin
    Bosch, Linda
    Patel, Rajesh
    Do, An
    Watson, Andrew
    Sandmann, Thomas
    Darbonne, Walter
    McCaffery, Ian
    Peters, Eric
    Raja, Rajiv
    CANCER RESEARCH, 2015, 75