Temporally Consistent Depth Map Estimation Based on 3D-MRF

被引:0
|
作者
Yao, Li [1 ]
Li, DongXiao [1 ]
Zhang, Ming [1 ]
机构
[1] Zhejiang Univ, Inst Informat & Commun Engn, Hangzhou 310027, Peoples R China
关键词
stereo matching; dense depth map; belief propagation; temporal consistency;
D O I
10.1117/12.913467
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mutiview plus associated depth information form a typical 3D video representation. Depth map of each frame in a video sequence is usually estimated by stereo matching approaches separately. As a result it has weak temporal consistency. In this paper, we propose a novel framework based on spatio-temporal Markov Random Fields. It enforces temporal correlation by employing additional state in the graphical model. Improved belief propagation-sequential algorithm is exploited as an efficient optimization scheme to minimize the energy function. The experimental results demonstrate that the proposed method produces dependable depth maps in both spatial and temporal domain.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Combining Defocus and Photoconsistency for Depth Map Estimation in 3D Integral Imaging
    Espinos-Morato, H.
    Latorre-Carmona, P.
    Martinez Sotoca, J.
    Pla, F.
    Javidi, B.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2017), 2017, 10255 : 114 - 121
  • [42] TEMPORALLY CONSISTENT HANDLING OF DISOCCLUSIONS WITH TEXTURE SYNTHESIS FOR DEPTH-IMAGE-BASED RENDERING
    Koeppel, M.
    Ndjiki-Nya, P.
    Doshkov, D.
    Lakshman, H.
    Merkle, P.
    Mueller, K.
    Wiegand, T.
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1809 - 1812
  • [43] Improving Depth Estimation Using Map-Based Depth Priors
    Patil, Vaishakh
    Liniger, Alexander
    Dai, Dengxin
    Van Gool, Luc
    IEEE Robotics and Automation Letters, 2022, 7 (02): : 3640 - 3647
  • [44] 3D Implicit Transporter for Temporally Consistent Keypoint Discovery
    Zhong, Chengliang
    Zheng, Yuhang
    Zheng, Yupeng
    Zhao, Hao
    Yi, Li
    Mu, Xiaodong
    Wang, Ling
    Li, Pengfei
    Zhou, Guyue
    Yang, Chao
    Zhang, Xinliang
    Zhao, Jian
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 3846 - 3857
  • [45] Improving Depth Estimation Using Map-Based Depth Priors
    Patil, Vaishakh
    Liniger, Alexander
    Dai, Dengxin
    Gool, Luc Van
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 3640 - 3647
  • [46] Fast Depth Coding Based on Depth Map Segmentation for 3D Video Coding
    Liao, Yi-Wen
    Lin, Jie-Ru
    Chen, Mei-Juan
    Chen, Jeng-Wei
    2017 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2017,
  • [47] Scene Flow Estimation Based on 3D Local Rigidity Assumption and Depth Map Driven Anisotropic Smoothness
    Xiang, Xuezhi
    Zhai, Mingliang
    Zhang, Rongfang
    Xu, Wangwang
    El Saddik, Abdulmotaleb
    IEEE ACCESS, 2018, 6 : 30012 - 30023
  • [48] Depth Map Estimation Based on Geometric Scene Categorization
    Lee, Hyukzae
    Jung, Chanho
    Kim, Changick
    PROCEEDINGS OF THE 19TH KOREA-JAPAN JOINT WORKSHOP ON FRONTIERS OF COMPUTER VISION (FCV 2013), 2013, : 170 - 173
  • [49] 3D VESSEL RECONSTRUCTION IN OCT-ANGIOGRAPHY VIA DEPTH MAP ESTIMATION
    Yu, Shuai
    Xie, Jianyang
    Hao, Jinkui
    Zheng, Yalin
    Zhang, Jiong
    Hu, Yan
    Liu, Jiang
    Zhao, Yitian
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1609 - 1613
  • [50] The application of MRF based-on chaos-PSO optimization in depth information estimation
    Zeng, Xiangjin
    Lu, Cheng
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41 (SUPPL.I): : 223 - 225