Accurate and Robust Unitary Transformations of a High-Dimensional Quantum System

被引:70
|
作者
Anderson, B. E. [1 ,2 ,3 ,4 ,5 ]
Sosa-Martinez, H. [1 ,2 ]
Riofrio, C. A. [6 ,7 ]
Deutsch, Ivan H. [6 ]
Jessen, Poul S. [1 ,2 ]
机构
[1] Univ Arizona, Ctr Quantum Informat & Control, Coll Opt Sci, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[3] NIST, Gaithersburg, MD 20899 USA
[4] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[5] Univ Maryland, Gaithersburg, MD 20899 USA
[6] Univ New Mexico, Dept Phys & Astron, Ctr Quantum Informat & Control, Albuquerque, NM 87131 USA
[7] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
基金
美国国家科学基金会;
关键词
SPIN DYNAMICS; DESIGN;
D O I
10.1103/PhysRevLett.114.240401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Unitary transformations are the most general input-output maps available in closed quantum systems. Good control protocols have been developed for qubits, but questions remain about the use of optimal control theory to design unitary maps in high-dimensional Hilbert spaces, and about the feasibility of their robust implementation in the laboratory. Here we design and implement unitary maps in a 16-dimensional Hilbert space associated with the 6S(1/2) ground state of Cs-133, achieving fidelities > 0.98 with built-in robustness to static and dynamic perturbations. Our work has relevance for quantum information processing and provides a template for similar advances on other physical platforms.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] \A quantum router for high-dimensional entanglement
    Erhard, Manuel
    Malik, Mehul
    Zeilinger, Anton
    QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (01):
  • [32] High-dimensional quantum frequency converter
    Liu, Shilong
    Yang, Chen
    Xu, Zhaohuai
    Liu, Shikai
    Li, Yan
    Li, Yinhai
    Zhou, Zhiyuan
    Guo, Guangcan
    Shi, Baosen
    PHYSICAL REVIEW A, 2020, 101 (01)
  • [33] Streaming Algorithms for High-Dimensional Robust Statistics
    Diakonikolas, Ilias
    Kane, Daniel M.
    Pensia, Ankit
    Pittas, Thanasis
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [34] Efficient Multiparty Quantum Secret Sharing Scheme in High-Dimensional System
    Wang, Ming-Ming
    Tian, Lu-Ting
    Qu, Zhi-Guo
    CLOUD COMPUTING AND SECURITY, PT III, 2018, 11065 : 23 - 31
  • [35] Robust Methods for High-Dimensional Linear Learning
    Merad, Ibrahim
    Gaiffas, Stephane
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [36] Fast Robust Correlation for High-Dimensional Data
    Raymaekers, Jakob
    Rousseeuw, Peter J.
    TECHNOMETRICS, 2021, 63 (02) : 184 - 198
  • [37] Improved Algorithms for High-dimensional Robust PCA
    Lin, Xiaoyong
    Zhang, Zeqiu
    Wang, Jue
    Zhang, Zhaoyang
    Qiu, Tingting
    Mi, Zhengkun
    2016 IEEE INTERNATIONAL CONFERENCE ON UBIQUITOUS WIRELESS BROADBAND (ICUWB2016), 2016,
  • [38] A robust PCR method for high-dimensional regressors
    Hubert, M
    Verboven, S
    JOURNAL OF CHEMOMETRICS, 2003, 17 (8-9) : 438 - 452
  • [39] Entanglement-free witnessing of quantum incompatibility in a high-dimensional system
    Wu, Dian
    Zhao, Qi
    Luo, Yi-Han
    Zhong, Han-Sen
    Peng, Li-Chao
    Chen, Kai
    Xue, Peng
    Li, Li
    Liu, Nai-Le
    Lu, Chao-Yang
    Pan, Jian-Wei
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [40] Scale calibration for high-dimensional robust regression
    Loh, Po-Ling
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 5933 - 5994