Record High Hydrogen Storage Capacity in the Metal-Organic Framework Ni2(m-dobdc) at Near-Ambient Temperatures

被引:187
|
作者
Kapelewski, Matthew T. [1 ,2 ]
Runcevski, Tomce [1 ,2 ]
Tarver, Jacob D. [3 ,4 ]
Jiang, Henry Z. H. [1 ,2 ]
Hurst, Katherine E. [4 ]
Parilla, Philip A. [5 ]
Ayala, Anthony [3 ,6 ]
Gennett, Thomas [4 ,7 ]
FitzGerald, Stephen A. [8 ]
Brown, Craig M. [3 ,9 ]
Long, Jeffrey R. [1 ,2 ,10 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA
[4] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
[5] Natl Renewable Energy Lab, Mat Sci Ctr, Golden, CO 80401 USA
[6] Univ Maryland, Dept Chem, College Pk, MD 20742 USA
[7] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA
[8] Oberlin Coll, Dept Phys, Oberlin, OH 44074 USA
[9] Univ Delaware, Chem & Biomol Engn, Newark, DE 19716 USA
[10] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
基金
美国能源部;
关键词
ADSORPTION; HYDRIDES; BINDING; SITES; ENVIRONMENT; PROGRESS; DENSITY;
D O I
10.1021/acs.chemmater.8b03276
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen holds promise as a clean alternative automobile fuel, but its on-board storage presents significant challenges due to the low temperatures and/or high pressures required to achieve a sufficient energy density. The opportunity to significantly reduce the required pressure for high density H-2 storage persists for metal-organic frameworks due to their modular structures and large internal surface areas. The measurement of H-2 adsorption in such materials under conditions most relevant to on-board storage is crucial to understanding how these materials would perform in actual applications, although such data have to date been lacking. In the present work, the metal-organic frameworks M-2(m-dobdc) (M = Co, Ni; m-dobdc(4-) = 4,6-dioxido-1,3-benzenedicarboxylate) and the isomeric frameworks M-2(dobdc) (M = Co, Ni; dobdc(4-) = 1,4-dioxido-1,3-benzenedicarboxylate), which are known to have open metal cation sites that strongly interact with H-2, were evaluated for their usable volumetric H-2 storage capacities over a range of near-ambient temperatures relevant to on-board storage. Based upon adsorption isotherm data, Ni-2(m-dobdc) was found to be the top-performing physisorptive storage material with a usable volumetric capacity between 100 and 5 bar of 11.0 g/L at 25 degrees C and 23.0 g/L with a temperature swing between -75 and 25 degrees C. Additional neutron diffraction and infrared spectroscopy experiments performed with in situ dosing of D-2 or H-2 were used to probe the hydrogen storage properties of these materials under the relevant conditions. The results provide benchmark characteristics for comparison with future attempts to achieve improved adsorbents for mobile hydrogen storage applications.
引用
收藏
页码:8179 / 8189
页数:11
相关论文
共 50 条
  • [31] Improved hydrogen storage in the metal-organic framework Cu3(BTC)2
    Krawiec, Piotr
    Kramer, Markus
    Sabo, Michal
    Kunschke, Ruediger
    Froede, Heidi
    Kaskel, Stefan
    ADVANCED ENGINEERING MATERIALS, 2006, 8 (04) : 293 - 296
  • [32] High ammonia storage capacity in LiCl nanoparticle-embedded metal-organic framework composites
    Kim, Hyojin
    Choe, Jong Hyeak
    Yun, Hongryeol
    Kurisigal, Jintu Francis
    Yu, Sumin
    Lee, Yong Hoon
    Lee, Jung-Hoon
    Hong, Chang Seop
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [33] High capacity gas storage by a 4,8-connected metal-organic polyhedral framework
    Tan, Chenrong
    Yang, Sihai
    Champness, Neil R.
    Lin, Xiang
    Blake, Alexander J.
    Lewis, William
    Schroeder, Martin
    CHEMICAL COMMUNICATIONS, 2011, 47 (15) : 4487 - 4489
  • [34] A NbO-type metal-organic framework exhibiting high deliverable capacity for methane storage
    Song, Chengling
    Ling, Yajing
    Feng, Yunlong
    Zhou, Wei
    Yildirim, Taner
    He, Yabing
    CHEMICAL COMMUNICATIONS, 2015, 51 (40) : 8508 - 8511
  • [35] Exploring the Chemical Space of Metal-Organic Frameworks with rht Topology for High Capacity Hydrogen Storage
    Liu, Kunhuan
    Chen, Zhijie
    Islamoglu, Timur
    Lee, Seung-Joon
    Chen, Haoyuan
    Yildirim, Taner
    Farha, Omar K.
    Snurr, Randall Q.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (18): : 7435 - 7446
  • [36] Exceptionally high H2 storage by a metal-organic polyhedral framework
    Yan, Yong
    Lin, Xiang
    Yang, Sihai
    Blake, Alexander J.
    Dailly, Anne
    Champness, Neil R.
    Hubberstey, Peter
    Schroder, Martin
    CHEMICAL COMMUNICATIONS, 2009, (09) : 1025 - 1027
  • [37] High Performance Hydrogen Storage from Be-BIB Metal-Organic Framework at Room Temperature
    Lim, Wei-Xian
    Thornton, Aaron W.
    Hill, Anita J.
    Cox, Barry J.
    Hill, James M.
    Hill, Matthew R.
    LANGMUIR, 2013, 29 (27) : 8524 - 8533
  • [38] High-pressure hydrogen storage on modified MIL-101 metal-organic framework
    Klyamkin, Semen N.
    Chuvikov, Sergey V.
    Maletskaya, Nina V.
    Kogan, Ekaterina V.
    Fedin, Vladimir P.
    Kovalenko, Konstantin A.
    Dybtsev, Danil N.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (12) : 1562 - 1570
  • [39] INOR 314-A microporous metal-organic framework with high hydrogen and methane storage capacities
    Wang, Xi-sen
    Ma, Shengqian
    Yuan, Da-Qiang
    Zhou, Hong-Cai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [40] Triazacoronene-Based 2D Conductive Metal-Organic Framework for High-Capacity Lithium Storage
    Yin, Jia-Cheng
    Lian, Xin
    Li, Zhi-Gang
    Cheng, Mingren
    Liu, Ming
    Xu, Jian
    Li, Wei
    Xu, Yunhua
    Li, Na
    Bu, Xian-He
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (41)