A posteriori regularization method for the two-dimensional inverse heat conduction problem

被引:0
|
作者
Cheng, Wei [1 ]
Liu, Yi-Liang [2 ]
Zhao, Qi [1 ]
机构
[1] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Peoples R China
[2] Nanhang Jincheng Coll, Sch Air Transport & Engn, Nanjing 211156, Peoples R China
来源
OPEN MATHEMATICS | 2022年 / 20卷 / 01期
基金
中国国家自然科学基金;
关键词
ill-posed problem; inverse heat conduction problem; regularization; a posteriori parameter choice strategy; error estimate; BOUNDARY VALUE METHOD; PARABOLIC EQUATIONS BACKWARD; PARAMETER CHOICE; CAUCHY-PROBLEM; WAVELET; TIME; TIKHONOV;
D O I
10.1515/math-2022-0489
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider a two-dimensional inverse heat conduction problem that determines the surface temperature distribution from measured data at the fixed location. This problem is severely ill-posed, i.e., the solution does not depend continuously on the data. A quasi-boundary value regularization method in conjunction with the a posteriori parameter choice strategy is proposed to solve the problem. A Holder-type error estimate between the approximate solution and its exact solution is also given. The error estimate shows that the regularized solution is dependent continuously on the data.
引用
收藏
页码:1030 / 1038
页数:9
相关论文
共 50 条
  • [21] Regularization method for the radially symmetric inverse heat conduction problem
    I Djerrar
    L Alem
    L Chorfi
    Boundary Value Problems, 2017
  • [22] Regularization method for the radially symmetric inverse heat conduction problem
    Djerrar, I.
    Alem, L.
    Chorfi, L.
    BOUNDARY VALUE PROBLEMS, 2017,
  • [23] Numerical method for the solution of two-dimensional inverse heat conduction problems
    Reinhardt, H.-J.
    International Journal for Numerical Methods in Engineering, 1991, 32 (02): : 363 - 383
  • [24] Determination of Unknown Boundary Condition in the Two-Dimensional Inverse Heat Conduction Problem
    Wang, Bo
    Zou, Guang'an
    Wang, Qiang
    INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2012, 2012, 7390 : 383 - 390
  • [25] Numerical solution of the general two-dimensional inverse heat conduction problem (IHCP)
    Osman, AM
    Dowding, KJ
    Beck, JV
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1997, 119 (01): : 38 - 45
  • [26] Modal identification of a boundary input in the two-dimensional inverse heat conduction problem
    Rapoport, E. Ya.
    Diligenskaya, A. N.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2018, 22 (02): : 380 - 394
  • [27] Two-dimensional inverse heat conduction problem in a quarter plane: integral approach
    Anis Bel Hadj Hassin
    Lahcène Chorfi
    Journal of Applied Mathematics and Computing, 2020, 62 : 565 - 586
  • [28] Numerical solution of two-dimensional radially symmetric inverse heat conduction problem
    Qian, Zhi
    Hon, Benny Y. C.
    Xiong, Xiang Tuan
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2015, 23 (02): : 121 - 134
  • [29] A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline
    Lu, T.
    Liu, B.
    Jiang, P. X.
    Zhang, Y. W.
    Li, H.
    APPLIED THERMAL ENGINEERING, 2010, 30 (13) : 1574 - 1579
  • [30] Two-dimensional inverse heat conduction problem in a quarter plane: integral approach
    Bel Hadj Hassin, Anis
    Chorfi, Lahcene
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 565 - 586