CLASSES OF FUNCTIONS WITH IMPROVED ESTIMATES IN APPROXIMATION BY THE MAX-PRODUCT BERNSTEIN OPERATOR

被引:19
|
作者
Coroianu, Lucian [1 ]
Gal, Sorin G. [1 ]
机构
[1] Univ Oradea, Dept Math & Comp Sci, Oradea 410087, Romania
关键词
Max-product Bernstein approximation operator; Jackson-type estimate; pointwise estimate; polygonal line; Lipschitz function; quasi-concave function;
D O I
10.1142/S0219530511001856
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we find large classes of positive functions, others than those in [1], having even a Jackson-type estimate, omega(1)(f; 1/n), in approximation by the nonlinear max-product Bernstein operator. The uniform estimate of the order O[n omega(1)(f; 1/n)(2) + omega(1)( f; 1/n)] is achieved, while near to the endpoints 0 and 1, the better pointwise estimate of the order omega(1)(f, root x(1 - x)/n) is obtained. Finally, we prove that besides the preservation of quasi-convexity found in [1], the nonlinear max-product Bernstein operator preserves the quasi-concavity too.
引用
收藏
页码:249 / 274
页数:26
相关论文
共 50 条
  • [21] APPROXIMATION AND SHAPE PRESERVING PROPERTIES OF THE TRUNCATED BASKAKOV OPERATOR OF MAX-PRODUCT KIND
    Bede, Barnabas
    Coroianu, Lucian
    Gal, Sorin G.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2011, 52 (01): : 89 - 107
  • [22] APPROXIMATION AND SHAPE PRESERVING PROPERTIES OF THE NONLINEAR BASKAKOV OPERATOR OF MAX-PRODUCT KIND
    Bede, Barnabas
    Coroianu, Lucian
    Gal, Sorin G.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (04): : 193 - 218
  • [23] APPROXIMATION BY TRUNCATED FAVARD-SZASZ-MIRAKJAN OPERATOR OF MAX-PRODUCT KIND
    Bede, Barnabas
    Coroianu, Lucian
    Gal, Sorin G.
    DEMONSTRATIO MATHEMATICA, 2011, 44 (01) : 105 - 122
  • [24] A Possibilistic Approach of the Max-Product Bernstein Kind Operators
    Sorin G. Gal
    Results in Mathematics, 2014, 65 : 453 - 462
  • [25] Max-product for the q-Bernstein-Chlodowsky operators
    Guller, Ozge Ozalp
    Cattani, Carlo
    Acar, Ecem
    Serenbay, Sevilay Kirci
    FILOMAT, 2023, 37 (04) : 1065 - 1085
  • [26] Saturation Classes for Max-Product Neural Network Operators Activated by Sigmoidal Functions
    Danilo Costarelli
    Gianluca Vinti
    Results in Mathematics, 2017, 72 : 1555 - 1569
  • [27] A Possibilistic Approach of the Max-Product Bernstein Kind Operators
    Gal, Sorin G.
    RESULTS IN MATHEMATICS, 2014, 65 (3-4) : 453 - 462
  • [28] Saturation Classes for Max-Product Neural Network Operators Activated by Sigmoidal Functions
    Costarelli, Danilo
    Vinti, Gianluca
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1555 - 1569
  • [29] Conformable fractional approximation by max-product operators
    Anastassiou, George A.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (01): : 3 - 22
  • [30] Approximation and shape preserving properties by nonlinear Lupaş type Bernstein operators of max-product kind
    Mansoori, Mohd Shanawaz
    Khan, Asif
    Ansari, Khursheed J.
    ARABIAN JOURNAL OF MATHEMATICS, 2025, : 107 - 120