CHARACTERIZATION OF GROUPS E6(3) AND 2E6(3) BY GRUENBERG-KEGEL GRAPH

被引:0
|
作者
Khramova, A. P. [1 ]
Maslova, N., V [2 ,3 ,4 ]
Panshin, V. V. [1 ,5 ]
Staroletov, A. M. [1 ,5 ]
机构
[1] Sobolev Inst Math, 4 Acad Koptyug Ave, Novosibirsk 630090, Russia
[2] Krasovskii Inst Math & Mech UB RAS, 16 S Kovalevskaja Str, Ekaterinburg 620108, Russia
[3] Ural Fed Univ, 19 Mira Str, Ekaterinburg 620002, Russia
[4] Ural Math Ctr, 19 Mira Str, Ekaterinburg 620002, Russia
[5] Novosibirsk State Univ, 1 Pirogova Str, Novosibirsk 630090, Russia
关键词
finite group; simple group; the Gruenberg-Kegel graph; exceptional group of Lie type E-6; EXCEPTIONAL GROUPS; ELEMENT ORDERS; FINITE-GROUPS; PRIME GRAPH;
D O I
10.33048/semi.2021.18.124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Gruenberg-Kegel graph (or the prime graph) of a finite group Gamma(G) is defined as follows. The vertex set of Gamma(G) is the set of all prime divisors of the order of G. Two distinct primes r and s regarded as vertices are adjacent in Gamma(G) if and only if there exists an element of order rs in G. Suppose that L congruent to E-6(3) or L congruent to E--2(6)(3). We prove that if G is a finite group such that Gamma(G) = Gamma(L), then G congruent to L.
引用
收藏
页码:1651 / 1656
页数:6
相关论文
共 50 条