Relating phase transition heat capacity to thermal conductivity and effusivity in Cu2Se

被引:23
|
作者
Brown, David R. [1 ,2 ]
Heijl, Richard [3 ]
Borup, Kasper A. [4 ]
Iversen, Bo B. [4 ]
Palmqvist, Anders [4 ]
Snyder, G. J. [1 ,5 ]
机构
[1] CALTECH, Dept Appl Phys & Mat Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[2] US DOE, Adv Res Project Agcy Energy, 1000 Independence Ave SW, Washington, DC 20585 USA
[3] Chalmers, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden
[4] Aarhus Univ, Ctr Mat Crystallog, Dept Chem, Langelandsgade 140, DK-8000 Aarhus C, Denmark
[5] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
来源
基金
新加坡国家研究基金会;
关键词
thermoelectrics; thermal effusivity; heat capacity; copper selenide; differential scanning calorimetry; THERMOREFLECTANCE; DIFFUSIVITY;
D O I
10.1002/pssr.201600160
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate measurement of thermal conductivity is essential to determine the thermoelectric figure-of-merit, zT. Near the phase transition of Cu2Se at 410 K, the transport properties change rapidly with temperature, and there is a concurrent peak in measured heat capacity from differential scanning calorimetry (DSC). Interpreting the origin as a broad increase in heat capacity or as a transient resulted in a three-fold difference in the reported zT in two recent publications. To resolve this discrepancy, thermal effusivity was deduced from thermal conductivity and diffusivity measurements via the transient plane source (TPS) method and compared with that calculated from thermal diffusivity and the two interpretations of the DSC data for heat capacity. The comparison shows that the DSC measurement gave the heat capacity relevant for calculation of the thermal conductivity of Cu2Se. The thermal conductivity calculated this way follows the electronic contribution to thermal conductivity closely, and hence the main cause of the zT peak is concluded to be the enhanced Seebeck coefficient. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:618 / 621
页数:4
相关论文
共 50 条
  • [31] EPITAXY OF CU2SE ON MICA
    KOGUT, AN
    MIKOLAICHUK, AG
    KRISTALLOGRAFIYA, 1976, 21 (04): : 861 - 862
  • [32] Superparamagnetism of Cu2Se Nanoparticles
    Kim, Soo-Whan
    Lee, Kyu Joon
    Jung, Myung-Hwa
    Li, Yan
    Seo, Won Seok
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (07) : 5880 - 5883
  • [33] Phase Equilibria in the Cu2Se−SnSe−CuSbSe2 System
    E. N. Ismailova
    L. F. Mashadieva
    I. B. Bakhtiyarly
    M. B. Babanly
    Russian Journal of Inorganic Chemistry, 2019, 64 : 801 - 809
  • [34] DETERMINATION OF THE CRYSTAL-STRUCTURE OF SUPERIONIC PHASE OF CU2SE
    SAKUMA, T
    SUGIYAMA, K
    MATSUBARA, E
    WASEDA, Y
    MATERIALS TRANSACTIONS JIM, 1989, 30 (05): : 365 - 369
  • [35] PHASE-RELATIONSHIPS AND HOMOGENEITY REGION OF ALLOYS OF AG2SE WITH CU2SE
    YAKSHIBAEV, RA
    KONEV, VN
    MUKHAMADEEVA, NN
    BALAPANOV, MK
    INORGANIC MATERIALS, 1988, 24 (03) : 415 - 418
  • [36] REFINEMENT OF THE PHASE-EQUILIBRIUM CURVE IN THE CU-SE SYSTEM NEAR THE COMPOSITION CU2SE
    KONEV, VN
    INGLIZYAN, PN
    FOMENKOV, SA
    BEREZIN, VM
    MEZRIN, VA
    INORGANIC MATERIALS, 1980, 16 (10) : 1185 - 1187
  • [37] X-RAY-DIFFRACTION STUDY ON ALPHA-REVERSIBLE-BETA-PHASE TRANSITION OF CU2SE
    TONEJC, A
    TONEJC, AM
    JOURNAL OF SOLID STATE CHEMISTRY, 1981, 39 (02) : 259 - 261
  • [38] Atomic-Scale Observation of Grain Boundary Dominated Unsynchronized Phase Transition in Polycrystalline Cu2Se
    Yuan, Hua-Lei
    Wang, Kaiwen
    Hu, Hanwen
    Yang, Lei
    Chen, Jie
    Zheng, Kun
    ADVANCED MATERIALS, 2022, 34 (40)
  • [39] In situ observations of the permanent structural modifications, phase transformations and band gap narrowing upon heating of Cu2Se/Yb/Cu2Se films
    Qasrawi, A. F.
    Omareya, Olfat A.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 785 : 1160 - 1165
  • [40] Thermoelectric Properties of Strained β-Cu2Se
    Cao, Wei
    Wang, Ziyu
    Miao, Ling
    Shi, Jing
    Xiong, Rui
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (29) : 34367 - 34373