Bayesian P-splines and advanced computing in R for a changepoint analysis on spatio-temporal point processes

被引:2
|
作者
Altieri, L. [1 ]
Cocchi, D. [1 ]
Greco, F. [1 ]
Illian, J. B. [2 ,3 ]
Scott, E. M. [4 ]
机构
[1] Univ Bologna, Dept Stat Sci, Bologna, Italy
[2] Univ St Andrews, CREEM, Sch Math & Stat, St Andrews KY16 9AJ, Fife, Scotland
[3] NTNU, Trondheim, Norway
[4] Univ Glasgow, Sch Math & Stat, Glasgow, Lanark, Scotland
关键词
Earthquake data; changepoint analysis; spatio-temporal point processes; spatial effect; log-Gaussian Cox processes; Bayesian P-splines; parallel computing; 62H11; 62M30; MODELS; DEPENDENCE; INFERENCE;
D O I
10.1080/00949655.2016.1146280
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents advanced computational aspects of a new method for changepoint detection on spatio-temporal point process data. We summarize the methodology, based on building a Bayesian hierarchical model for the data and declaring prior conjectures on the number and positions of the changepoints, and show how to take decisions regarding the acceptance of potential changepoints. The focus of this work is about choosing an approach that detects the correct changepoint and delivers smooth reliable estimates in a feasible computational time; we propose Bayesian P-splines as a suitable tool for managing spatial variation, both under a computational and a model fitting performance perspective. The main computational challenges are outlined and a solution involving parallel computing in R is proposed and tested on a simulation study. An application is also presented on a data set of seismic events in Italy over the last 20 years.
引用
收藏
页码:2531 / 2545
页数:15
相关论文
共 50 条
  • [11] A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data
    Combrexelle, S.
    Wendt, H.
    Tourneret, J. -Y.
    Altmann, Y.
    McLaughlin, S.
    Abry, P.
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, (IWSSIP 2016), 2016, : 331 - 334
  • [12] Bayesian Modelling and Analysis of Spatio-Temporal Neuronal Networks
    Rigat, Fabio
    de Gunst, Mathisca
    van Pelt, Jaap
    BAYESIAN ANALYSIS, 2006, 1 (04): : 733 - 764
  • [13] Bayesian joint spatio-temporal analysis of multiple diseases
    Gomez-Rubio, Virgilio
    Palmi-Perales, Francisco
    Lopez-Abente, Gonzalo
    Ramis-Prieto, Rebeca
    Fernandez-Navarro, Pablo
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2019, 43 (01) : 51 - 74
  • [14] Bayesian spatio-temporal analysis of breastfeeding practices in Ghana
    Gayawan, Ezra
    Adjei, Christiana Nyarko
    GEOJOURNAL, 2021, 86 (04) : 1943 - 1955
  • [15] Bayesian spatio-temporal analysis of breastfeeding practices in Ghana
    Ezra Gayawan
    Christiana Nyarko Adjei
    GeoJournal, 2021, 86 : 1943 - 1955
  • [16] Non-parametric smoothing of spatio-temporal point processes
    Grillenzoni, C
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (01) : 61 - 78
  • [17] A J-function for Inhomogeneous Spatio-temporal Point Processes
    Cronie, O.
    van Lieshout, M. N. M.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (02) : 562 - 579
  • [18] Summary statistics for spatio-temporal point processes on linear networks
    Moradi, Mehdi
    Sharifi, Ali
    SPATIAL STATISTICS, 2024, 61
  • [19] Spatio-Temporal Analysis Of Climatic Data Using Additive Regression Splines
    Sharples, J. J.
    Hutchinson, M. F.
    MODSIM 2005: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING, 2005, : 1695 - 1701
  • [20] Hierarchical Bayesian modeling of spatio-temporal area-interaction processes
    Chen, Jiaxun
    Micheas, Athanasios C.
    Holan, Scott H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167