DISSIPATION OF MAGNETIC FIELDS IN STAR-FORMING CLOUDS WITH DIFFERENT METALLICITIES

被引:14
|
作者
Susa, Hajime [1 ]
Doi, Kentaro [1 ]
Omukai, Kazuyuki [2 ]
机构
[1] Konan Univ, Dept Phys, Kobe, Hyogo 658, Japan
[2] Tohoku Univ, Astron Inst, Sendai, Miyagi 980, Japan
来源
ASTROPHYSICAL JOURNAL | 2015年 / 801卷 / 01期
关键词
magnetohydrodynamics (MHD); stars: magnetic field; stars: Population II; stars: Population III; SMALL-SCALE DYNAMO; 1ST STARS; POPULATION-III; PROTOSTELLAR COLLAPSE; INTERSTELLAR GRAINS; FRAGMENTATION; ACCRETION; GENERATION; GALAXIES; DUST;
D O I
10.1088/0004-637X/801/1/13
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the dissipation process of magnetic fields in the metallicity range 0-1Z(circle dot) for contracting prestellar cloud cores. By solving non-equilibrium chemistry for important charged species, including charged grains, we evaluate the drift velocity of the magnetic-field lines with respect to the gas. We find that the magnetic flux dissipates in the density range 10(12) cm(-3) less than or similar to n(H) less than or similar to 10(17) cm(-3) for the solar-metallicity case at the scale of the core, which is assumed to be the Jeans scale. The dissipation density range becomes narrower for lower metallicity. The magnetic field is always frozen to the gas below metallicity less than or similar to 10(-7)-10(-6) Z(circle dot), depending on the ionization rate by cosmic rays and/or radioactivity. With the same metallicity, the dissipation density range becomes wider for lower ionization rates. The presence of such a dissipative regime is expected to cause various dynamical phenomena in protostellar evolution such as the suppression of jet/outflow launching and the fragmentation of circumstellar disks depending on the metallicity.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] FORMATION OF STRUCTURE IN STAR-FORMING CLOUDS
    PUDRITZ, RE
    CANADIAN JOURNAL OF PHYSICS, 1990, 68 (09) : 808 - 823
  • [22] On the star-forming ability of Molecular Clouds
    Anathpindika, S.
    Burkert, A.
    Kuiper, R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (01) : 1277 - 1287
  • [23] MHD Turbulence In Star-Forming Clouds
    Padoan, P.
    Kritsuk, A. G.
    Lunttila, T.
    Juvela, M.
    Nordlund, A.
    Norman, M. L.
    Ustyugov, S. D.
    PLASMAS IN THE LABORATORY AND IN THE UNIVERSE: INTERACTIONS, PATTERNS, AND TURBULENCE, 2010, 1242 : 219 - +
  • [24] MHD turbulence in star-forming clouds
    Mac Low, MM
    Klessen, R
    Heitsch, F
    OPTICAL AND INFRARED SPECTROSCOPY OF CIRCUMSTELLAR MATTER, 1999, 188 : 177 - 185
  • [25] THE ROLE OF ICES IN STAR-FORMING CLOUDS
    Hocuk, S.
    6TH ZERMATT ISM-SYMPOSIUM: CONDITIONS AND IMPACT OF STAR FORMATION: FROM LAB TO SPACE: IN MEMORY OF CHARLES H. TOWNES, 2016, 75-76 : 333 - 336
  • [26] CHARACTERISTIC STRUCTURE OF STAR-FORMING CLOUDS
    Myers, Philip C.
    ASTROPHYSICAL JOURNAL, 2015, 806 (02):
  • [27] Ambipolar diffusion in star-forming clouds
    Hujeirat, A
    ASTRONOMY & ASTROPHYSICS, 1998, 334 (02) : 742 - 745
  • [28] MOLECULAR CLOUDS AND STAR-FORMING REGIONS
    MCCUTCHEON, WH
    JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY OF CANADA, 1992, 86 (04) : 195 - 209
  • [29] The Magnetic Field versus Density Relation in Star-forming Molecular Clouds
    Auddy, Sayantan
    Basu, Shantanu
    Kudoh, Takahiro
    ASTROPHYSICAL JOURNAL LETTERS, 2022, 928 (01)
  • [30] Different regulation of stellar metallicities between star-forming and quiescent galaxies - insights into galaxy quenching
    Baker, William M.
    Maiolino, Roberto
    Bluck, Asa F. L.
    Belfiore, Francesco
    Curti, Mirko
    D'Eugenio, Francesco
    Piotrowska, Joanna M.
    Tacchella, Sandro
    Trussler, James A. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 534 (01) : 30 - 38