Canopy Cover Estimation Based on LiDAR and Landsat 8 Data using Support Vector Regression

被引:0
|
作者
Tampinongkol, Felliks Feiters [1 ]
Setiawan, Yudi [2 ]
Nursalam, Wim Iqbal [3 ]
Hudjimartsu, Sahid [4 ]
Prasetyo, Lilik Budi [2 ]
机构
[1] Univ Bunda Mulia, Dept Informat, Jl Ancol Barat IV, Jakarta 14430, Indonesia
[2] IPB Univ, Dept Forest Resource Conservat, Jl Raya Dramaga, Bogor 16680, Indonesia
[3] IPB Univ, Environm Anal & Spatial Modeling Lab, Forests2020 Programme, Jl Raya Dramaga, Bogor 16680, Indonesia
[4] Ibn Khaldun Univ, Geoinformat Informat Engn Dept, Jl KH Soleh Iskandar KM 2, Bogor, Indonesia
关键词
Canopy cover; Landsat; 8; OLI; LiDAR; Machine learning; Support vector; SVR; AIRBORNE LIDAR;
D O I
10.1109/ICoDSE53690.2021.9648453
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Indonesia has large areas of forest that spread in almost every island of Indonesia. Forest in Indonesia also have various types of ecosystem, therefore they have an important role to protect each element contained within the ecosystem. The forest monitoring system in Indonesia still using the traditional approach for monitoring forests areas. This paper aims to generate a prediction model using remote sensing data and support vector regression for the model to estimate forest cover, especially in Indonesia. Landsat 8 OLI reflectance value from each band was used to estimate forest canopy cover with the integration of LiDAR data. The prediction model of forest canopy cover was observed at R-2 = 0.6921 and RMSE = 0.1658 of canopy cover. In this case R-2 means the correlation between LiDAR point cloud with Landsat bands. The SVR kernel used in this study was radial basis function with parameter (Cost: 10, Gamma: 1 and Epsilon: 0.1).
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Estimation of the fractional canopy cover of pecan orchards using Landsat 5 satellite data, aerial imagery, and orchard floor photographs
    Majd, Amir M. Samani
    Bleiweiss, Max P.
    DuBois, Dave
    Shukla, Manoj K.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (16) : 5937 - 5952
  • [32] Data mining applied for land cover classification using Landsat 8
    dos Santos, Guilherme Domingues
    Francisco, Cristiane Nunes
    de Almeida, Claudia Maria
    BOLETIM DE CIENCIAS GEODESICAS, 2015, 21 (04): : 706 - 720
  • [33] Support vector regression for high-resolution beach surface moisture estimation from terrestrial LiDAR intensity data
    Jin, Junling
    Verbeurgt, Jeffrey
    De Sloover, Lars
    Stal, Cornelis
    Deruyter, Greet
    Montreuil, Anne-Lise
    Vos, Sander
    De Maeyer, Philippe
    De Wulf, Alain
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
  • [34] FOREST CANOPY COVER ANALYSIS USING UAS LIDAR
    Liu, Qingwang
    Li, Shiming
    Hu, Kailong
    Pang, Yong
    Li, Zengyuan
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2863 - 2866
  • [35] Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index
    Korhonen, Lauri
    Hadi
    Packalen, Petteri
    Rautiainen, Miina
    REMOTE SENSING OF ENVIRONMENT, 2017, 195 : 259 - 274
  • [36] Canopy Cover Mapping in Ratai Bay Mangrove Forests using Airborne LiDAR Data
    Mulyanto, M.
    Kamal, Muhammad
    Wijaya, Muhammad Sufwandika
    EIGHTH GEOINFORMATION SCIENCE SYMPOSIUM 2023: GEOINFORMATION SCIENCE FOR SUSTAINABLE PLANET, 2024, 12977
  • [37] Land Surface Emissivity and temperature retrieval from Landsat-8 satellite data using Support Vector Regression and weighted least squares approach
    Saradjian, Mohammad Reza
    Jouybari-Moghaddam, Yaser
    REMOTE SENSING LETTERS, 2019, 10 (05) : 439 - 448
  • [38] Support vector regression based modeling of pier scour using field data
    Pal, Mahesh
    Singh, N. K.
    Tiwari, N. K.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2011, 24 (05) : 911 - 916
  • [39] Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index
    Korhonen, Lauri
    Korpela, Ilkka
    Heiskanen, Janne
    Maltamo, Matti
    REMOTE SENSING OF ENVIRONMENT, 2011, 115 (04) : 1065 - 1080
  • [40] Drowsiness Estimation Using Electroencephalogram and Recurrent Support Vector Regression
    Akbar, Izzat Aulia
    Igasaki, Tomohiko
    INFORMATION, 2019, 10 (06)