A comprehensive study on slicing processes optimization of silicon ingot for photovoltaic applications

被引:29
|
作者
Ozturk, Savas [1 ,2 ]
Aydin, Levent [3 ]
Celik, Erdal [4 ]
机构
[1] Izmir Katip Celebi Univ, Fac Engn & Architecture, Dept Mat Sci & Engn, TR-35620 Izmir, Turkey
[2] Dokuz Eylul Univ, Grad Sch Nat & Appl Sci, TR-35370 Izmir, Turkey
[3] Izmir Katip Celebi Univ, Fac Engn & Architecture, Dept Mech Engn, TR-35620 Izmir, Turkey
[4] Dokuz Eylul Univ, Fac Engn, Dept Met & Mat Engn, TR-35370 Izmir, Turkey
关键词
Silicon wafer; Cutting parameters; Regression models; Minimize the surface roughness; ROUGHNESS PREDICTION MODEL; DISCHARGE MACHINING PROCESS; ARTIFICIAL NEURAL-NETWORK; FINITE-ELEMENT-ANALYSIS; SURFACE-ROUGHNESS; DIAMOND WIRE; CUTTING PARAMETERS; GENETIC ALGORITHM; MULTIOBJECTIVE OPTIMIZATION; REGRESSION-ANALYSIS;
D O I
10.1016/j.solener.2017.12.040
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Systematic cutting process design and optimization problems are studied for surface roughness minimization by stochastic algorithms. As the experimental background of the study, n-type single crystalline silicon (Si) ingot are cut into Si wafer with a thickness of 375 mu m using a wire saw machine. In order to optimize the cutting parameters successfully, a two-step study has been organized as (i) a detailed study on multiple nonlinear regression analysis of the process parameters for predicting the feed rate and wire speed effects, (ii) design and optimization steps. Regression models include linear, quadratic, trigonometric, logarithmic and their rational forms for the same surface roughness problem. In design and optimization section, four distinct stochastic optimization algorithms (Differential Evaluation, Nelder-Mead, Random Search and Simulated Annealing) have been performed systematically to avoid inherent scattering of the stochastic processes. To investigate the advantages and disadvantages of the introduced mathematical processes for the similar cutting process problems, a review list are also given for the optimization on volumetric metal removal rate (VMRR), wear ratio (WR), material removal rate (MRR) and surface roughness (SR) by distinguishing the modeling methodology, model types, and optimization algorithms. It is also shown that different rational regression models can be utilized with the collaboration of stochastic optimization methods successfully to minimize the surface roughness of Si wafers.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 50 条
  • [31] Optimization of mixed casting processes considering discrete ingot sizes
    Park, Yong Kuk
    Yang, Jung-Min
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2009, 23 (07) : 1899 - 1910
  • [32] Optimization of porous silicon reflectance for silicon photovoltaic cells
    Strehlke, S
    Bastide, S
    Lévy-Clément, C
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1999, 58 (04) : 399 - 409
  • [33] Silicon epitaxy in nanoscale for photovoltaic applications
    Yoo, Jinkyoung
    Binh-Minh Nguyen
    Dayeh, Shadi A.
    Schuele, Paul
    Evans, David
    Picraux, S. T.
    NANOEPITAXY: MATERIALS AND DEVICES VI, 2014, 9174
  • [34] Growth of silicon sheets for photovoltaic applications
    R. O. Bell
    J. P. Kalejs
    Journal of Materials Research, 1998, 13 : 2732 - 2739
  • [35] Improved Black Silicon for Photovoltaic Applications
    Algasinger, Michael
    Paye, Julie
    Werner, Florian
    Schmidt, Jan
    Brandt, Martin S.
    Stutzmann, Martin
    Koynov, Svetoslav
    ADVANCED ENERGY MATERIALS, 2013, 3 (08) : 1068 - 1074
  • [36] Hydrogenated microcrystalline silicon for photovoltaic applications
    Wyrsch, N
    Torres, P
    Goerlitzer, M
    Vallat, E
    Kroll, U
    Shah, A
    Poruba, A
    Vanecek, M
    SOLID STATE PHENOMENA, 1999, 67-8 : 89 - 100
  • [37] Characteristics of silicon nanocrystals for photovoltaic applications
    Moore, D.
    Krishnamurthy, S.
    Chao, Y.
    Wang, Q.
    Brabazon, D.
    McNally, P. J.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (03): : 604 - 607
  • [38] Growth of silicon sheets for photovoltaic applications
    Bell, RO
    Kalejs, JP
    JOURNAL OF MATERIALS RESEARCH, 1998, 13 (10) : 2732 - 2739
  • [39] Quantum effects in silicon for photovoltaic applications
    Ingenhoven, P.
    Anopchenko, A.
    Tengattini, A.
    Gandolfi, D.
    Sgrignuoli, F.
    Pucker, G.
    Jestin, Y.
    Pavesi, L.
    Balboni, R.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (06): : 1071 - 1075
  • [40] Hydrogenated microcrystalline silicon for photovoltaic applications
    Wyrsch, N.
    Torres, P.
    Goerlitzer, M.
    Vallat, E.
    Kroll, U.
    Shah, A.
    Poruba, A.
    Vanecek, M.
    Solid State Phenomena, 1999, 67 : 89 - 100