Droplets containing large solid particle inside formation and breakup dynamics in a flow-focusing microfluidic device

被引:5
|
作者
Pan, Dawei [1 ]
Chen, Qiang [1 ]
Zeng, Yong [1 ]
Li, Bo [1 ]
机构
[1] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Monodisperse S/W/O compound droplets; Flow-focusing device; Neck rupture behaviors; Scaling law; Driving mechanisms; DOUBLE EMULSION DROPLETS; OIL COMPOUND DROPLETS; T-JUNCTION; FABRICATION; MICROENCAPSULATION; MICROCAPSULES; MECHANISM;
D O I
10.1016/j.expthermflusci.2020.110103
中图分类号
O414.1 [热力学];
学科分类号
摘要
The breakup dynamics of compound droplets containing large particle inside (S/W/O) in a flow-focusing microfluidic device were systematically investigated, and four typical flow regimes, regarding multiple-encapsulation, slug, transition and cobble, are distinguished. At low flow rate of outer fluid, Q(c) < 140 mL/h, the neck breakup can be divided into squeezing stage (W-n/W-c >= 0.25), and rapid pinch-off stage (W-n/W-c <= 0.25) during the whole formation process. However, for Q(c) >= 140 mL/h, the neck rupture behavior appears various, in which only rapid pinch-off stage can be observed. Generally, the neck dimensionless width, W-n/W-c variation with remaining time usually obeys a power law function. Moreover, the liquid film thickness always obtains a critical value as the flow rate of outer fluid further increases. Specially, it suggests that the differences in the breakup dynamics are mainly caused by the existence of solid particles. Finally, the corresponding driving mechanisms were also discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Impact of viscosity ratio on the dynamics of droplet breakup in a microfluidic flow focusing device
    Lee, Wingki
    Walker, Lynn M.
    Anna, Shelley L.
    XVTH INTERNATIONAL CONGRESS ON RHEOLOGY - THE SOCIETY OF RHEOLOGY 80TH ANNUAL MEETING, PTS 1 AND 2, 2008, 1027 : 994 - +
  • [32] Three-dimensional numerical simulation of droplet formation in a microfluidic flow-focusing device
    Han, Wenbo
    Chen, Xueye
    Wu, Zhongli
    Zheng, Yue
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (06)
  • [33] A hybrid axisymmetric flow-focusing device for monodisperse picoliter droplets
    Morimoto, Yuya
    Kuribayashi-Shigetomi, Kaori
    Takeuchi, Shoji
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (05)
  • [34] Three-dimensional numerical simulation of droplet formation in a microfluidic flow-focusing device
    Wenbo Han
    Xueye Chen
    Zhongli Wu
    Yue Zheng
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41
  • [35] Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device
    Lu, Yutao
    Fu, Taotao
    Zhu, Chunying
    Ma, Youguang
    Li, Huai Z.
    MICROFLUIDICS AND NANOFLUIDICS, 2014, 16 (06) : 1047 - 1055
  • [36] Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device
    Yutao Lu
    Taotao Fu
    Chunying Zhu
    Youguang Ma
    Huai Z. Li
    Microfluidics and Nanofluidics, 2014, 16 : 1047 - 1055
  • [37] Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids
    Zhihong Nie
    MinsSeok Seo
    Shengqing Xu
    Patrick C. Lewis
    Michelle Mok
    Eugenia Kumacheva
    George M. Whitesides
    Piotr Garstecki
    Howard A. Stone
    Microfluidics and Nanofluidics, 2008, 5 : 585 - 594
  • [38] Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids
    Nie, Zhihong
    Seo, MinsSeok
    Xu, Shengqing
    Lewis, Patrick C.
    Mok, Michelle
    Kumacheva, Eugenia
    Whitesides, George M.
    Garstecki, Piotr
    Stone, Howard A.
    MICROFLUIDICS AND NANOFLUIDICS, 2008, 5 (05) : 585 - 594
  • [39] Formation of Bubbles and Droplets in Parallel, Coupled Flow-Focusing Geometries
    Hashimoto, Michinao
    Shevkoplyas, Sergey S.
    Zasonska, Beata
    Szymborski, Tomasz
    Garstecki, Piotr
    Whitesides, George M.
    SMALL, 2008, 4 (10) : 1795 - 1805
  • [40] Breakup dynamics of low-density gas and liquid interface during Taylor bubble formation in a microchannel flow-focusing device
    Li, Xingchen
    Huang, Yiyong
    Chen, Xiaoqian
    Wu, Zan
    CHEMICAL ENGINEERING SCIENCE, 2020, 215