Quantifying Long-Term Land Surface and Root Zone Soil Moisture over Tibetan Plateau

被引:46
|
作者
Zhuang, Ruodan [1 ]
Zeng, Yijian [2 ]
Manfreda, Salvatore [3 ]
Su, Zhongbo [2 ,4 ]
机构
[1] Univ Basilicata, Dept European & Mediterranean Cultures, Architecture, Environm,Cultural Heritage, I-75100 Matera, Italy
[2] Univ Twente, Fac Geoinformat Sci & Earth Observat, Hengelosestr 99, NL-7514 AE Enschede, Netherlands
[3] Univ Naples Federico II, Dept Civil Architectural & Environm Engn, Via Claudio 21, I-80125 Naples, Italy
[4] Changan Univ, Sch Water & Environm, Key Lab Subsurface Hydrol & Ecol Effect Arid Reg, Minist Educ, Xian 710054, Peoples R China
基金
中国国家自然科学基金;
关键词
Tibetan Plateau; soil moisture; root zone; triple collocation; CDF matching; SMAR; DATA ASSIMILATION; SATELLITE; VALIDATION; RETRIEVAL; MODEL; CALIBRATION; PRODUCTS; QUALITY; RECORDS; ASCAT;
D O I
10.3390/rs12030509
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
It is crucial to monitor the dynamics of soil moisture over the Tibetan Plateau, while considering its important role in understanding the land-atmosphere interactions and their influences on climate systems (e.g., Eastern Asian Summer Monsoon). However, it is very challenging to have both the surface and root zone soil moisture (SSM and RZSM) over this area, especially the study of feedbacks between soil moisture and climate systems requires long-term (e.g., decadal) datasets. In this study, the SSM data from different sources (satellites, land data assimilation, and in-situ measurements) were blended while using triple collocation and least squares method with the constraint of in-situ data climatology. A depth scaling was performed based on the blended SSM product, using Cumulative Distribution Function (CDF) matching approach and simulation with Soil Moisture Analytical Relationship (SMAR) model, to estimate the RZSM. The final product is a set of long-term (10 yr) consistent SSM and RZSM product. The inter-comparison with other existing SSM and RZSM products demonstrates the credibility of the data blending procedure used in this study and the reliability of the CDF matching method and SMAR model in deriving the RZSM.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Variation, causes and future estimation of surface soil moisture on the Tibetan Plateau
    Fan K.
    Zhang Q.
    Sun P.
    Song C.
    Zhu X.
    Yu H.
    Shen Z.
    Dili Xuebao/Acta Geographica Sinica, 2019, 74 (03): : 520 - 533
  • [22] Robust simulation of root zone soil moisture with assimilation of surface soil moisture data
    Montaldo, N
    Albertson, JD
    Mancini, M
    Kiely, G
    WATER RESOURCES RESEARCH, 2001, 37 (12) : 2889 - 2900
  • [23] Relationship between Surface Soil Moisture and Root Zone Soil Moisture in Henan Province
    Fu Jun-e
    Pang Zhiguo
    Li Jiren
    Cao Daling
    PROCEEDINGS OF THE 35TH IAHR WORLD CONGRESS, VOLS III AND IV, 2013,
  • [24] Long-term relationships of MODIS NDVI with rainfall, land surface temperature, surface soil moisture and groundwater storage over monsoon core region of India
    Rajesh, A. Naga
    Abinaya, S.
    Durga, G. Purna
    Kumar, T. V. Lakshmi
    ARID LAND RESEARCH AND MANAGEMENT, 2023, 37 (01) : 51 - 70
  • [25] Atmospheric Water Vapor Budget and Its Long-Term Trend Over the Tibetan Plateau
    Yan, Hongru
    Huang, Jianping
    He, Yongli
    Liu, Yuzhi
    Wang, Tianhe
    Li, Jiming
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (23)
  • [26] Long-term changes in the diurnal cycle of total cloud cover over the Tibetan Plateau
    Deng, Cong
    Li, Jiming
    Li, Jiayi
    Li, Ruixue
    Zhang, Weiyuan
    Zhao, Yang
    Zhao, Yuxin
    Jian, Bida
    ATMOSPHERIC RESEARCH, 2023, 295
  • [27] Detectable anthropogenic forcing on the long-term changes of summer precipitation over the Tibetan Plateau
    Dan Zhao
    Lixia Zhang
    Tianjun Zhou
    Climate Dynamics, 2022, 59 : 1939 - 1952
  • [28] Detectable anthropogenic forcing on the long-term changes of summer precipitation over the Tibetan Plateau
    Zhao, Dan
    Zhang, Lixia
    Zhou, Tianjun
    CLIMATE DYNAMICS, 2022, 59 (7-8) : 1939 - 1952
  • [29] Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau
    Meng, X.
    Li, R.
    Luan, L.
    Lyu, S.
    Zhang, T.
    Ao, Y.
    Han, B.
    Zhao, L.
    Ma, Y.
    CLIMATE DYNAMICS, 2018, 51 (11-12) : 4157 - 4168
  • [30] Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau
    X. Meng
    R. Li
    L. Luan
    S. Lyu
    T. Zhang
    Y. Ao
    B. Han
    L. Zhao
    Y. Ma
    Climate Dynamics, 2018, 51 : 4157 - 4168