Rankin-Selberg L-functions;
prime number theorem;
base change;
PLANCHEREL MEASURES;
EULER PRODUCTS;
CLASSIFICATION;
CONJECTURE;
D O I:
10.1007/s11425-010-4137-x
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we define a Rankin-Selberg L-function attached to automorphic cuspidal representations of GL(m)(A(E)) x GL(m ')(A(F)) over cyclic algebraic number fields E and F which are invariant under the Galois action, by exploiting a result proved by Arthur and Clozel, and prove a prime number theorem for this L-function.
机构:
Indian Stat Inst, Theoret Stat & Math Unit, 203 Barrackpore Trunk Rd, Kolkata 700108, IndiaIndian Stat Inst, Theoret Stat & Math Unit, 203 Barrackpore Trunk Rd, Kolkata 700108, India
Ganguly, Satadal
Mawia, Ramdin
论文数: 0引用数: 0
h-index: 0
机构:
Indian Stat Inst, Theoret Stat & Math Unit, 203 Barrackpore Trunk Rd, Kolkata 700108, IndiaIndian Stat Inst, Theoret Stat & Math Unit, 203 Barrackpore Trunk Rd, Kolkata 700108, India
机构:
St.Petersburg Department of the Steklov Mathematical Institute, St.PetersburgSt.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg
机构:
Waseda Univ, Sch Sci & Engn, Dept Math Sci, Shinjuku Ku, Tokyo 1698555, JapanWaseda Univ, Sch Sci & Engn, Dept Math Sci, Shinjuku Ku, Tokyo 1698555, Japan