Prime number theorems for Rankin-Selberg L-functions over number fields

被引:41
|
作者
Gillespie, Tim [2 ]
Ji GuangHua [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
Rankin-Selberg L-functions; prime number theorem; base change; PLANCHEREL MEASURES; EULER PRODUCTS; CLASSIFICATION; CONJECTURE;
D O I
10.1007/s11425-010-4137-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we define a Rankin-Selberg L-function attached to automorphic cuspidal representations of GL(m)(A(E)) x GL(m ')(A(F)) over cyclic algebraic number fields E and F which are invariant under the Galois action, by exploiting a result proved by Arthur and Clozel, and prove a prime number theorem for this L-function.
引用
收藏
页码:35 / 46
页数:12
相关论文
共 50 条