Capturing the multivariate extremal index: bounds and interconnections

被引:7
|
作者
Ehlert, Andree [1 ]
Schlather, Martin [1 ]
机构
[1] Univ Gottingen, Inst Math Stochast, D-37073 Gottingen, Germany
关键词
Multivariate extremal index function; Dependence function; Adjusted extremal coefficient; Max-stable process; Upper bound; Lower bound;
D O I
10.1007/s10687-008-0062-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The multivariate extremal index function is a direction specific extension of the well-known univariate extremal index. Since statistical inference on this function is difficult it is desirable to have a broad characterization of its attributes. We extend the set of common properties of the multivariate extremal index function and derive sharp bounds for the entire function given only marginal dependence. Our results correspond to certain restrictions on the two dependence functions defining the multivariate extremal index, which are opposed to Smith and Weissman's (1996) conjecture on arbitrary dependence functions. We show further how another popular dependence measure, the extremal coefficient, is closely related to the multivariate extremal index. Thus, given the value of the former it turns out that the above bounds may be improved substantially. Conversely, we specify improved bounds for the extremal coefficient itself that capitalize on marginal dependence, thereby approximating two views of dependence that have frequently been treated separately. Our results are completed with example processes.
引用
收藏
页码:353 / 377
页数:25
相关论文
共 50 条
  • [31] EXTREMAL PROBABILITY BOUNDS IN COMBINATORIAL OPTIMIZATION
    Padmanabhan, D. I. V. Y. A.
    Ahipasaoglu, Selin Damla
    Ramachandra, A. R. J. U. N.
    Natarajan, K. A. R. T. H. I. K.
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (04) : 2828 - 2858
  • [32] Improved bounds for the extremal number of subdivisions
    Janzer, Oliver
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [33] ESTIMATING THE EXTREMAL INDEX
    SMITH, RL
    WEISSMAN, I
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1994, 56 (03): : 515 - 528
  • [34] An overview of the extremal index
    Moloney, Nicholas R.
    Faranda, Davide
    Sato, Yuzuru
    CHAOS, 2019, 29 (02)
  • [35] THE INDEX OF AN EXTREMAL ARC
    KARUSH, W
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1952, 4 (03): : 281 - 294
  • [36] Decoupling multivariate polynomials: Interconnections between tensorizations
    Usevich, Konstantin
    Dreesen, Philippe
    Ishteva, Mariya
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 363 : 22 - 34
  • [37] On the extremal dependence coefficient of multivariate distributions
    Frahm, Gabriel
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (14) : 1470 - 1481
  • [38] Decomposition for Multivariate Extremal Processes Finance
    Balkema, A. A.
    Pancheva, E. I.
    Communications in Statistics. Part A: Theory and Methods, 1996, 25 (04):
  • [39] Extremal values and bounds for the zero forcing number
    Gentner, Michael
    Penso, Lucia D.
    Rautenbach, Dieter
    Souza, Ueverton S.
    DISCRETE APPLIED MATHEMATICS, 2016, 214 : 196 - 200
  • [40] Bounds for the extremal eigenvalues of gain Laplacian matrices
    Kannan, M. Rajesh
    Kumar, Navish
    Pragada, Shivaramakrishna
    arXiv, 2021,