Crack initiation and growth in 316LN stainless steel: Experiments and XFEM simulations

被引:11
|
作者
Sidharth, R. [1 ]
Nikhil, R. [2 ]
Krishnan, S. A. [2 ]
Keralavarma, S. M. [1 ]
Moitra, A. [2 ]
Vasudevan, M. [2 ]
机构
[1] Indian Inst Technol Madras, Dept Aerosp Engn, Chennai, India
[2] Indira Gandhi Ctr Atom Res, Kalpakkam, Tamil Nadu, India
关键词
Ductile fracture; Extended finite element method; Void growth and coalescence; Plastic instability; Uncoupled models; FINITE-ELEMENT-METHOD; DUCTILE-FRACTURE; VOID NUCLEATION; STRAIN; PLASTICITY; FAILURE; COALESCENCE; RUPTURE; RATES; SHEAR;
D O I
10.1016/j.engfracmech.2022.108770
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A methodology for computer simulation of ductile fracture in engineering structures using the eXtended Finite Element Method (XFEM) is presented. Crack initiation is modeled using an instability-based failure criterion derived from the micromechanics of void coalescence. The criterion depends on the state of stress at failure, strain hardening and the void volume fraction, whose evolution as a function of plastic strain is obtained using a physics-based void growth law. Material separation is modeled using the cohesive zone method, where cohesive surface elements are dynamically inserted into continuum elements that satisfy the failure criterion. The methodology is illustrated by comparing the model predictions with experimental data on uncracked and pre-cracked 316LN stainless steel specimens. It is shown that, using a set of parameters calibrated from standard tests, the model is able to quantitatively predict fracture in a variety of specimens. In contrast, widely used continuum damage models are unable to predict fracture in the different specimen types using a single set of material parameters.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] On the hot tensile deformation behavior of an AISI 316LN stainless steel
    Rao, P. Mallikarjuna
    Bhattacharya, S. S.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2009, 62 (01) : 41 - 48
  • [42] Multiaxial isothermal and thermomechanical fatigue behavior of 316LN stainless steel
    Lin, Qiang
    Chen, Xu
    Zheng, Yiming
    Zhang, Zhe
    Chen, Gang
    Li, Bingbing
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2022, 197
  • [43] Thermal deformation behavior of 316LN stainless steel used for ITER
    Taiyuan University of Technology, College of Materials Science and Engineering, Taiyuan, China
    不详
    Cailiao Rechuli Xuebao, 2 (66-71):
  • [44] Martensitic transformation in SUS 316LN austenitic stainless steel at RT
    J. Manjanna
    S. Kobayashi
    Y. Kamada
    S. Takahashi
    H. Kikuchi
    Journal of Materials Science, 2008, 43 : 2659 - 2665
  • [45] MULTIAXIAL RATCHETING DEFORMATION OF 316LN STAINLESS STEEL AT ELEVATED TEMPERATURES
    Sun, Xingyue
    Xing, Ruisi
    Chen, Xu
    PROCEEDINGS OF THE ASME 2020 PRESSURE VESSELS & PIPING CONFERENCE (PVP2020), VOL 9, 2020,
  • [46] Plastic deformation in 316LN stainless steel - characterization of deformation microstructures
    Byun, TS
    Lee, EH
    Hunn, JD
    JOURNAL OF NUCLEAR MATERIALS, 2003, 321 (01) : 29 - 39
  • [47] Creep crack growth simulations in 316H stainless steel
    Yatomi, Masataka
    Davies, Catrin M.
    Nikbin, Kamran M.
    ENGINEERING FRACTURE MECHANICS, 2008, 75 (18) : 5140 - 5150
  • [48] Stress corrosion cracking of 316LN stainless steel with orthogonal scratches
    Xiong, Zhiheng
    Wang, Yunxin
    Yang, Bin
    Wang, Yanli
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 10040 - 10052
  • [49] Fatigue properties of type 316LN stainless steel in air and mercury
    Strizak, JP
    Tian, H
    Liaw, PK
    Mansur, LK
    JOURNAL OF NUCLEAR MATERIALS, 2005, 343 (1-3) : 134 - 144
  • [50] Martensitic transformation in SUS 316LN austenitic stainless steel at RT
    Manjanna, J.
    Kobayashi, S.
    Kamada, Y.
    Takahashi, S.
    Kikuchi, H.
    JOURNAL OF MATERIALS SCIENCE, 2008, 43 (08) : 2659 - 2665