Crack initiation and growth in 316LN stainless steel: Experiments and XFEM simulations

被引:11
|
作者
Sidharth, R. [1 ]
Nikhil, R. [2 ]
Krishnan, S. A. [2 ]
Keralavarma, S. M. [1 ]
Moitra, A. [2 ]
Vasudevan, M. [2 ]
机构
[1] Indian Inst Technol Madras, Dept Aerosp Engn, Chennai, India
[2] Indira Gandhi Ctr Atom Res, Kalpakkam, Tamil Nadu, India
关键词
Ductile fracture; Extended finite element method; Void growth and coalescence; Plastic instability; Uncoupled models; FINITE-ELEMENT-METHOD; DUCTILE-FRACTURE; VOID NUCLEATION; STRAIN; PLASTICITY; FAILURE; COALESCENCE; RUPTURE; RATES; SHEAR;
D O I
10.1016/j.engfracmech.2022.108770
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A methodology for computer simulation of ductile fracture in engineering structures using the eXtended Finite Element Method (XFEM) is presented. Crack initiation is modeled using an instability-based failure criterion derived from the micromechanics of void coalescence. The criterion depends on the state of stress at failure, strain hardening and the void volume fraction, whose evolution as a function of plastic strain is obtained using a physics-based void growth law. Material separation is modeled using the cohesive zone method, where cohesive surface elements are dynamically inserted into continuum elements that satisfy the failure criterion. The methodology is illustrated by comparing the model predictions with experimental data on uncracked and pre-cracked 316LN stainless steel specimens. It is shown that, using a set of parameters calibrated from standard tests, the model is able to quantitatively predict fracture in a variety of specimens. In contrast, widely used continuum damage models are unable to predict fracture in the different specimen types using a single set of material parameters.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Fatigue Crack Growth Behavior of 316LN Stainless Steel with Different Nitrogen Contents
    Babu, M. Nani
    Dutt, B. Shashank
    Venugopal, S.
    Sasikala, G.
    Albert, Shaju K.
    Bhaduri, A. K.
    Jayakumar, T.
    6TH INTERNATIONAL CONFERENCE ON CREEP, FATIGUE AND CREEP-FATIGUE INTERACTION, 2013, 55 : 716 - 721
  • [2] Mode II creep crack initiation in 316 LN stainless steel: experiments and modelling
    Poquillon, D
    Cabrillat, MT
    Pineau, A
    MATERIALS AT HIGH TEMPERATURES, 1999, 16 (02) : 99 - 107
  • [3] Mode II creep crack initiation in 316 LN stainless steel: experiments and modelling
    CEA Cadarache, DER/SEHSI/LECC, Bat 212, 13108 St-Paul-lez-Durance Cedex, France
    不详
    Mater High Temp, 2 (99-107):
  • [4] THE CORROSION FATIGUE CRACK PROPAGATION OF 316LN AUSTENITIC STAINLESS STEEL
    Yang, Bin
    Wu, Huanchun
    7TH INTERNATIONAL CONFERENCE INTEGRITY-RELIABILITY-FAILURE (IRF2020), 2020, : 321 - 322
  • [5] Mechanism of crack initiation and propagation of 316LN stainless steel during the high temperature tensile deformation
    Fu, Jia
    Zhang, Yishuai
    MATERIALS RESEARCH EXPRESS, 2020, 7 (08)
  • [6] Assessment of fatigue crack growth in 316LN stainless steel based on acoustic emission entropy
    Chai, Mengyu
    Zhang, Zaoxiao
    Duan, Quan
    Song, Yan
    INTERNATIONAL JOURNAL OF FATIGUE, 2018, 109 : 145 - 156
  • [7] Acoustic emission studies for characterization of fatigue crack growth in 316LN stainless steel and welds
    Chai, Mengyu
    Zhang, Jin
    Zhang, Zaoxiao
    Duan, Quan
    Cheng, Guangxu
    APPLIED ACOUSTICS, 2017, 126 : 101 - 113
  • [8] Influence of local crystallographic configuration on microcrack initiation in fatigued 316LN stainless steel: Experiments and crystal plasticity finite elements simulations
    Signor, L.
    Villechaise, P.
    Ghidossi, T.
    Lacoste, E.
    Gueguen, M.
    Courtin, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 649 : 239 - 249
  • [9] Cracking initiation mechanism of 316LN stainless steel in the process of the hot deformation
    Zhang, Xiuzhi
    Zhang, Yishuai
    Li, Yingjie
    Liu, Jiansheng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 559 : 301 - 306
  • [10] Characterization of the Q* parameter for evaluating creep crack growth rate for type 316LN stainless steel
    Ekaputra, I. M. W.
    Kim, Woo-Gon
    Park, Jae-Young
    Kim, Seon-Jin
    Kim, Eung-Seon
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2016, 30 (07) : 3151 - 3158