A Widely Linear Complex Autoregressive Process of Order One

被引:17
|
作者
Sykulski, Adam M. [1 ]
Olhede, Sofia C. [1 ,2 ]
Lilly, Jonathan M. [3 ]
机构
[1] UCL, Dept Stat Sci, Gower St, London WC1E 6BT, England
[2] Alan Turing Inst, London NW1 2DB, England
[3] NorthWest Res Associates, Bellevue, WA 98009 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Time series analysis; autoregressive processes; parameter estimation; maximum likelihood estimation; spectral analysis; seismic measurements; TIME-SERIES; SIGNALS; MULTIPLE; BANDWIDTH; PHASE;
D O I
10.1109/TSP.2016.2599503
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a simple stochastic process for modeling improper or noncircular complex-valued signals. The process is a natural extension of a complex-valued autoregressive process, extended to include a widely linear autoregressive term. This process can then capture elliptical, as opposed to circular, stochastic oscillations in a bivariate signal. The process is order one and is more parsimonious than alternative stochastic modeling approaches in the literature. We provide conditions for stationarity, and derive the form of the covariance and relation sequence of this model. We describe how parameter estimation can be efficiently performed both in the time and frequency domain. We demonstrate the practical utility of the process in capturing elliptical oscillations that are naturally present in seismic signals.
引用
收藏
页码:6200 / 6210
页数:11
相关论文
共 50 条
  • [31] Poisson Difference Integer Valued Autoregressive Model of Order One
    Alzaid, Abdulhamid A.
    Omair, Maha A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (02) : 465 - 485
  • [32] A Quaternion Widely Linear One-stage Prediction Algorithm
    Fernandez-Alcala, R. M.
    Navarro-Moreno, J.
    Ruiz-Molina, J. C.
    Jahanchahi, C.
    Dini, D. H.
    PIERS 2012 MOSCOW: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2012, : 1355 - 1358
  • [33] ACCELERATED DEGRADATION ANALYSIS BASED ON A RANDOM-EFFECT WIENER PROCESS WITH ONE-ORDER AUTOREGRESSIVE ERRORS
    Li, Junxing
    Wang, Zhihua
    Liu, Chengrui
    Qiu, Ming
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2019, 21 (02): : 246 - 255
  • [34] Widely Linear Multiuser Precoding for One-dimensional Signalling
    Bavand, Majid
    Blostein, Steven D.
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 157 - 161
  • [36] Complementary Cost Functions for Complex and Quaternion Widely Linear Estimation
    Xiang, Min
    Xia, Yili
    Mandic, Danilo P.
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (09) : 1344 - 1348
  • [37] Widely Linear Complex-Valued Kernel Methods for Regression
    Boloix-Tortosa, Rafael
    Jose Murillo-Fuentes, Juan
    Santos, Irene
    Perez-Cruz, Fernando
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (19) : 5240 - 5248
  • [38] A random-coefficient third-order autoregressive process
    Ghirmai, Tadesse
    DIGITAL SIGNAL PROCESSING, 2015, 38 : 13 - 21
  • [39] The distribution of the maximum of a first order autoregressive process: the continuous case
    Withers, Christopher S.
    Nadarajah, Saralees
    METRIKA, 2011, 74 (02) : 247 - 266
  • [40] Principal Component Analysis With Complex Kernel: The Widely Linear Model
    Papaioannou, Athanasios
    Zafeiriou, Stefanos
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (09) : 1719 - 1726