Application of Adaptive Neuro-Fuzzy Inference Rule-based Controller in Hybrid Electric Vehicles

被引:18
|
作者
Shaik, Ruksana Begam [1 ]
Kannappan, Ezhil Vignesh [1 ]
机构
[1] Malla Reddy Engn Coll A, Dept EEE, Secunderabad, Telangana, India
关键词
ANFIS rule-based controller; Mapping functions; Semi-empirical strategy; Premise parameters; Consequence parameters; ENERGY-STORAGE SYSTEM; SLIDING-MODE; STRATEGIES;
D O I
10.1007/s42835-020-00459-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Designing of hybrid architecture has greater importance in the development of electric vehicles to enhance the life cycle of the battery, to protect from nonlinearities and uncertainties of electrical energy storage systems. The objective of this paper is to design and apply the Adaptive Neuro-Fuzzy Inference rule-based controller with the semi-empirical strategy to protect from nonlinearities, uncertainties, and to improve efficiency in electric vehicles. In this paper, a fully active Li-Ion battery/Electric Double-Layer supercapacitor hybrid energy storage system used to decouple Li-Ion battery/Electric Double-Layer Supercapacitor from Direct Current bus and to generate Li-Ion battery current reference online semi-empirical rule-based energy management strategy used. The Control system is designed with the Adaptive Neuro-Fuzzy Interface rule-based controller to reduce non-linearity and different uncertainties of the energy storage system with two outputs battery current and DC bus voltage are chosen to measure control system design, which is tested under heavy and light load conditions. Results are validated using MATLAB/Simulink and the performance of the Adaptive Neuro-Fuzzy Interface rule-based controller is 16.96% and 9.81% greater than Robust Fractional Order Sliding Mode Controller under heavy and light load conditions.
引用
收藏
页码:1937 / 1945
页数:9
相关论文
共 50 条
  • [41] Generalization of adaptive neuro-fuzzy inference systems
    Azeem, MF
    Hanmandlu, M
    Ahmad, N
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (06): : 1332 - 1346
  • [42] Application of Adaptive Neuro-fuzzy Inference System for road accident prediction
    Hosseinpour, Mehdi
    Yahaya, Ahmad Shukri
    Ghadiri, Seyed Mohammadreza
    Prasetijo, Joewono
    KSCE JOURNAL OF CIVIL ENGINEERING, 2013, 17 (07) : 1761 - 1772
  • [43] Application of Adaptive Neuro-Fuzzy Inference System for Physical Habitat Simulation
    Zhao, Yue
    Zhou, Jianzhong
    Bi, Sheng
    Zhang, Huajie
    2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2013, : 349 - 353
  • [44] Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction
    Xue, Xinhua
    Yang, Xingguo
    NATURAL HAZARDS, 2013, 67 (02) : 901 - 917
  • [45] Application of adaptive neuro-fuzzy inference system to analysis of travel behavior
    Pribyl, O
    Goulias, KG
    TRAVELER BEHAVIOR AND VALUES 2003: PLANNING AND ADMINISTRATION, 2003, (1854): : 180 - 188
  • [46] Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction
    Xinhua Xue
    Xingguo Yang
    Natural Hazards, 2013, 67 : 901 - 917
  • [47] Application of Adaptive Neuro-Fuzzy Inference System in Flammability Parameter Prediction
    Mensah, Rhoda Afriyie
    Xiao, Jie
    Das, Oisik
    Jiang, Lin
    Xu, Qiang
    Alhassan, Mohammed Okoe
    POLYMERS, 2020, 12 (01)
  • [48] Application of Adaptive Neuro-fuzzy Inference System for road accident prediction
    Mehdi Hosseinpour
    Ahmad Shukri Yahaya
    Seyed Mohammadreza Ghadiri
    Joewono Prasetijo
    KSCE Journal of Civil Engineering, 2013, 17 : 1761 - 1772
  • [49] Application of Adaptive Neuro-Fuzzy Inference System for Diabetes Classification and Prediction
    Geman, Oana
    Chiuchisan, Iuliana
    Toderean , Roxana
    2017 IEEE INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2017, : 639 - 642
  • [50] An adaptive speed controller for induction motor drives using adaptive neuro-fuzzy inference system
    Chao, Kuei-Hsiang
    Shen, Yu-Ren
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF THEORETICAL AND METHODOLOGICAL ISSUES, 2007, 4681 : 381 - +