Determination of fiber orientation in MRI diffusion tensor imaging based on higher-order tensor decomposition

被引:3
|
作者
Ying, Leslie [1 ]
Zou, Yi Ming [2 ]
Klemer, David P.
Wang, Jiun-Jie [3 ]
机构
[1] Univ Wisconsin, Dept Elect Engn & Comp Sci, POB 784, Milwaukee, WI 53201 USA
[2] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
[3] Chang Gung Univ, Dept Medical Imaging & Radiolog, Taipei, Taiwan
来源
2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16 | 2007年
关键词
D O I
10.1109/IEMBS.2007.4352727
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
High Angular Resolution Diffusion Imaging (HARDI) techniques have been used for resolving multiple fiber directions within a voxel. Using HARDI, a high-order tensor can be obtained through generalized diffusion tensor imaging (GDTI). In this paper, based on the decomposition of the high-order diffusion tensors, a mathematical technique is presented which permits accurate resolution of multiple, randomly-oriented fiber tracts within tissue. A sequence of pseudo-eigenvalues and pseudo-eigenvectors are derived from the diffusion tensor through successive application of a best least-square rank-1 tensor approximation. These pseudo-eigenvalues and pseudo-eigenvectors are used to identify the major fiber directions within an individual image voxel. Results of a numerical simulation are presented to demonstrate the technique.
引用
收藏
页码:2065 / +
页数:2
相关论文
共 50 条
  • [21] A Higher-Order Singular Value Decomposition Tensor Emulator for Spatiotemporal Simulators
    Giri Gopalan
    Christopher K. Wikle
    Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 22 - 45
  • [22] Comprehensive and Quantitative Study of Rank-4 Order Diffusion Tensor Imaging and Positive Definite Rank-4 Order Diffusion Tensor Imaging: A Higher Order Tensor Imaging Study
    Jiang, Shan
    Zhang, Pengfei
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2014, 24 (01) : 83 - 93
  • [23] Calculation of higher-order moments by higher-order tensor renormalization group
    Morita, Satoshi
    Kawashima, Naoki
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 236 : 65 - 71
  • [24] Sparse deconvolution of higher order tensor for fiber orientation distribution estimation
    Feng, Yuanjing
    Wu, Ye
    Rathi, Yogesh
    Westin, Carl-Fredrik
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2015, 65 (03) : 229 - 238
  • [25] Myocardial fiber orientation mapping via MR diffusion tensor imaging
    Hsu, EW
    SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 1169 - 1170
  • [26] Functional MRI and Diffusion Tensor Imaging
    Walecki, J.
    Slubowska, E.
    NEURORADIOLOGY JOURNAL, 2008, 21 : 27 - 38
  • [27] Dimensionality Reduction of Volterra Kernels by Tensor Decomposition using Higher-Order SVD
    Libal, Urszula
    Baras, John S.
    Johansson, Karl H.
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 5935 - 5941
  • [28] HIGHER-ORDER NONNEGATIVE CANDECOMP/PARAFAC TENSOR DECOMPOSITION USING PROXIMAL ALGORITHM
    Wang, Deqing
    Cong, Fengyu
    Ristaniemi, Tapani
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3457 - 3461
  • [29] Diffusion Tensor MRI of the Heart - In Vivo Imaging of Myocardial Fiber Architecture
    Froeling M.
    Strijkers G.J.
    Nederveen A.J.
    Chamuleau S.A.
    Luijten P.R.
    Current Cardiovascular Imaging Reports, 2014, 7 (7) : 1 - 11
  • [30] A Maximum Enhancing Higher-Order Tensor Glyph
    Schultz, T.
    Kindlmann, G.
    COMPUTER GRAPHICS FORUM, 2010, 29 (03) : 1143 - 1152