Block-Coordinate Primal-Dual Method for Nonsmooth Minimization over Linear Constraints

被引:4
|
作者
Luke, D. Russell [1 ]
Malitsky, Yura [1 ]
机构
[1] Univ Gottingen, Inst Numer & Appl Math, Gottingen, Germany
来源
关键词
Saddle-point problems; First order algorithms; Primal-dual algorithms; Coordinate methods; Randomized methods; CONVERGENCE ANALYSIS; DECOMPOSITION; OPTIMIZATION; ALGORITHM; NONCONVEX;
D O I
10.1007/978-3-319-97478-1_6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of minimizing a convex, separable, nonsmooth function subject to linear constraints. The numerical method we propose is a block-coordinate extension of the Chambolle-Pock primal-dual algorithm. We prove convergence of the method without resorting to assumptions like smoothness or strong convexity of the objective, full-rank condition on the matrix, strong duality or even consistency of the linear system. Freedom from imposing the latter assumption permits convergence guarantees for misspecified or noisy systems.
引用
收藏
页码:121 / 147
页数:27
相关论文
共 50 条