Block-Coordinate Primal-Dual Method for Nonsmooth Minimization over Linear Constraints

被引:4
|
作者
Luke, D. Russell [1 ]
Malitsky, Yura [1 ]
机构
[1] Univ Gottingen, Inst Numer & Appl Math, Gottingen, Germany
来源
关键词
Saddle-point problems; First order algorithms; Primal-dual algorithms; Coordinate methods; Randomized methods; CONVERGENCE ANALYSIS; DECOMPOSITION; OPTIMIZATION; ALGORITHM; NONCONVEX;
D O I
10.1007/978-3-319-97478-1_6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of minimizing a convex, separable, nonsmooth function subject to linear constraints. The numerical method we propose is a block-coordinate extension of the Chambolle-Pock primal-dual algorithm. We prove convergence of the method without resorting to assumptions like smoothness or strong convexity of the objective, full-rank condition on the matrix, strong duality or even consistency of the linear system. Freedom from imposing the latter assumption permits convergence guarantees for misspecified or noisy systems.
引用
收藏
页码:121 / 147
页数:27
相关论文
共 50 条
  • [1] A PARALLEL BLOCK-COORDINATE APPROACH FOR PRIMAL-DUAL SPLITTING WITH ARBITRARY RANDOM BLOCK SELECTION
    Repetti, Audrey
    Chouzenoux, Emilie
    Pesquet, Jean-Christophe
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 235 - 239
  • [2] A New Randomized Block-Coordinate Primal-Dual Proximal Algorithm for Distributed Optimization
    Latafat, Puya
    Freris, Nikolaos M.
    Patrinos, Panagiotis
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (10) : 4050 - 4065
  • [3] An adaptive primal-dual framework for nonsmooth convex minimization
    Quoc Tran-Dinh
    Ahmet Alacaoglu
    Olivier Fercoq
    Volkan Cevher
    Mathematical Programming Computation, 2020, 12 : 451 - 491
  • [4] An adaptive primal-dual framework for nonsmooth convex minimization
    Quoc Tran-Dinh
    Alacaoglu, Ahmet
    Fercoq, Olivier
    Cevher, Volkan
    MATHEMATICAL PROGRAMMING COMPUTATION, 2020, 12 (03) : 451 - 491
  • [5] Fast Primal-Dual Gradient Method for Strongly Convex Minimization Problems with Linear Constraints
    Chernov, Alexey
    Dvurechensky, Pavel
    Gasnikov, Alexander
    DISCRETE OPTIMIZATION AND OPERATIONS RESEARCH, DOOR 2016, 2016, 9869 : 391 - 403
  • [6] Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
    Zhang, Yuchen
    Xiao, Lin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 353 - 361
  • [7] Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
    Zhang, Yuchen
    Xiao, Lin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [8] A primal-dual homotopy algorithm for -minimization with -constraints
    Brauer, Christoph
    Lorenz, Dirk A.
    Tillmann, Andreas M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (02) : 443 - 478
  • [9] An exponentially convergent primal-dual algorithm for nonsmooth composite minimization
    Ding, Dongsheng
    Hu, Bin
    Dhingra, Neil K.
    Jovanovic, Mihailo R.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 4927 - 4932
  • [10] A RANDOM BLOCK-COORDINATE PRIMAL-DUAL PROXIMAL ALGORITHM WITH APPLICATION TO 3D MESH DENOISING
    Repetti, Audrey
    Chouzenoux, Emilie
    Pesquet, Jean-Christophe
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3561 - 3565