Chemical and Phase Evolution of Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production

被引:105
|
作者
Lee, Sang Chul [1 ]
Benck, Jesse D. [2 ]
Tsai, Charlie [2 ,4 ]
Park, Joonsuk [1 ]
Koh, Ai Leen [3 ]
Abild-Pedersen, Frank [4 ]
Jaramillo, Thomas F. [2 ,4 ]
Sinclair, Robert [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Stanford Nano Shared Facil, Stanford, CA 94305 USA
[4] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
environmental transmission electron microscopy; molybdenum sulfide; hydrogen evolution; electrocatalysis; density functional theory; TRANSMISSION ELECTRON-MICROSCOPY; ENVIRONMENTAL TEM; RESOLUTION; TRANSITION; REDUCTION;
D O I
10.1021/acsnano.5b05652
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Amorphous MoSx is a highly active, earth abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS2 in composition and chemical state. However, structural changes in the MoSx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoSx catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmental TEM. For the first time, we directly observe the formation of crystalline domains in the MoSx catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoSx catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS2 continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. These results have important implications for the application of this highly active electrocatalyst for sustainable H-2 generation.
引用
收藏
页码:624 / 632
页数:9
相关论文
共 50 条
  • [21] Fabrication and Characterization of Amorphous Cobalt-Doped Molybdenum Sulfide for Hydrogen Evolution Reaction
    Lim, Dongwook
    Hwang, Hyein
    Kim, Taewoo
    Shim, Sang Eun
    Baeck, Sung-Hyeon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (10) : 8257 - 8262
  • [22] Amorphous molybdenum sulfide quantum dots: an efficient hydrogen evolution electrocatalyst in neutral medium
    Dinda, Diptiman
    Ahmed, Md. Estak
    Mandal, Sumit
    Mondal, Biswajit
    Saha, Shyamal Kumar
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (40) : 15486 - 15493
  • [23] Importance of Hydrophilic Pretreatment in the Hydrothermal Growth of Amorphous Molybdenum Sulfide for Hydrogen Evolution Catalysis
    Bose, Ranjith
    Balasingam, Suresh Kannan
    Shin, Seokhee
    Jin, Zhenyu
    Kwon, Do Hyun
    Jun, Yongseok
    Min, Yo-Sep
    LANGMUIR, 2015, 31 (18) : 5220 - 5227
  • [24] Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide
    Tran P.D.
    Tran T.V.
    Orio M.
    Torelli S.
    Truong Q.D.
    Nayuki K.
    Sasaki Y.
    Chiam S.Y.
    Yi R.
    Honma I.
    Barber J.
    Artero V.
    Nature Materials, 2016, 15 (6) : 640 - 646
  • [25] Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction
    Casalongue, Hernan G. Sanchez
    Benck, Jesse D.
    Tsai, Charlie
    Karlsson, Rasmus K. B.
    Kaya, Sarp
    Ng, May Ling
    Pettersson, Lars G. M.
    Abild-Pedersen, Frank
    Norskov, J. K.
    Ogasawara, Hirohito
    Jaramillo, Thomas F.
    Nilsson, Anders
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (50): : 29252 - 29259
  • [26] Ultrafast synthesis of amorphous molybdenum sulfide by magnetic induction heating for hydrogen evolution reaction
    Liu, Qiming
    Nichols, Forrest
    Bhuller, Amrinder
    Singewald, Kevin
    Kuo, Han-Lin
    Lu, Jennifer Q.
    Millhauser, Glenn L.
    Bridges, Frank
    Ge, Qingfeng
    Chen, Shaowei
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 342
  • [27] Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide
    Tran, Phong D.
    Tran, Thu V.
    Orio, Maylis
    Torelli, Stephane
    Truong, Quang Duc
    Nayuki, Keiichiro
    Sasaki, Yoshikazu
    Chiam, Sing Yang
    Yi, Ren
    Honma, Itaru
    Barber, James
    Artero, Vincent
    NATURE MATERIALS, 2016, 15 (06) : 640 - +
  • [28] Understanding homogeneous hydrogen evolution reactivity and deactivation pathways of molecular molybdenum sulfide catalysts
    Dave, M.
    Rajagopal, A.
    Damm-Ruttensperger, M.
    Schwarz, B.
    Naegele, F.
    Daccache, L.
    Fantauzzi, D.
    Jacob, T.
    Streb, C.
    SUSTAINABLE ENERGY & FUELS, 2018, 2 (05): : 1020 - 1026
  • [29] MXene-supported copper-molybdenum sulfide nanostructures as catalysts for hydrogen evolution
    Jiajin, Wu
    Zhou, Jiamin
    Zhu, Feng
    Wang, Hongyong
    Xu, Gang
    New Journal of Chemistry, 2022, 46 (03): : 1127 - 1134
  • [30] MXene-supported copper-molybdenum sulfide nanostructures as catalysts for hydrogen evolution
    Jiajin, Wu
    Zhou, Jiamin
    Zhu, Feng
    Wang, Hongyong
    Xu, Gang
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (03) : 1127 - 1134