Smooth estimators for estimating order restricted scale parameters of two gamma distributions

被引:19
|
作者
Misra, N [2 ]
Choudhary, PK
Dhariyal, ID
Kundu, D
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[2] Indian Inst Technol, Dept Math, Kanpur 208016, Uttar Pradesh, India
关键词
best scale equivariant estimator; mixed estimators; non-informative prior; restricted maximum likelihood estimator; scale equivariant squared error loss function; smooth estimators; unrestricted maximum likelihood estimator;
D O I
10.1007/s001840100169
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of component-wise estimation of ordered scale parameters of two gamma populations, when it is known apriori which population corresponds to each ordered parameter. Under the scale equivariant squared error loss function, smooth estimators that improve upon the best scale equivariant estimators are derived. These smooth estimators are shown to be generalized Bayes with respect to a non-informative prior. Finally, using Monte Carlo simulations, these improved smooth estimators are compared with the best scale equivariant estimators, their non-smooth improvements obtained in Vijayasree, Misra & Singh (1995), and the restricted maximum likelihood estimators.
引用
收藏
页码:143 / 161
页数:19
相关论文
共 50 条