Metabolic Engineering of Cupriavidus necator H16 for Sustainable Biofuels from CO2

被引:88
|
作者
Panich, Justin [1 ]
Fong, Bonnie [1 ]
Singer, Steven W. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA
关键词
RALSTONIA-EUTROPHA H16; ALCALIGENES-EUTROPHUS; GENE-EXPRESSION; TRANSCRIPTIONAL REGULATION; HETEROLOGOUS EXPRESSION; HYDROGEN-PRODUCTION; ESCHERICHIA-COLI; CARBON; SYSTEM; GROWTH;
D O I
10.1016/j.tibtech.2021.01.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Decelerating global warming is one of the predominant challenges of our time and will require conversion of CO2 to usable products and commodity chemicals. Of particular interest is the production of fuels, because the transportation sector is a major source of CO2 emissions. Here, we review recent technological advances inmetabolic engineering of the hydrogen-oxidizing bacterium Cupriavidus necator H16, a chemolithotroph that naturally consumes CO2 to generate biomass. We discuss recent successes in biofuel production using this organism, and the implementation of electrolysis/artificial photosynthesis approaches that enable growth of C. necator using renewable electricity and CO2. Last, we discuss prospects of improving the nonoptimal growth of C. necator in ambient concentrations of CO2.
引用
收藏
页码:412 / 424
页数:13
相关论文
共 50 条
  • [41] Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering
    Calvey, Christopher H.
    Nogue, Violeta Sanchez i
    White, Aleena M.
    Kneucker, Colin M.
    Woodworth, Sean P.
    Alt, Hannah M.
    Eckert, Carrie A.
    Johnson, Christopher W.
    METABOLIC ENGINEERING, 2023, 75 : 78 - 90
  • [42] H2-driven xylitol production in Cupriavidus necator H16 (vol 23, 345, 2024)
    Jamsa, Tytti
    Claassens, Nico J.
    Salusjarvi, Laura
    Nyyssola, Antti
    MICROBIAL CELL FACTORIES, 2025, 24 (01)
  • [43] An Engineered Constitutive Promoter Set with Broad Activity Range for Cupriavidus necator H16
    Johnson, Abayomi Oluwanbe
    Gonzalez-Villanueva, Miriam
    Tee, Kang Lan
    Wong, Tuck Seng
    ACS SYNTHETIC BIOLOGY, 2018, 7 (08): : 1918 - 1928
  • [44] The impact of oxygen-tolerant hydrogenases on cell energetics of Cupriavidus necator H16
    Iskandaryan, Meri
    Poladyan, Anna
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 248A - 249A
  • [45] Impact of various β-ketothiolase genes on PHBHHx production in Cupriavidus necator H16 derivatives
    Hisashi Arikawa
    Shunsuke Sato
    Applied Microbiology and Biotechnology, 2022, 106 : 3021 - 3032
  • [46] PhaP is involved in the formation of a network on the surface of polyhydroxyalkanoate inclusions in Cupriavidus necator H16
    Dennis, Douglas
    Sein, Vicki
    Martinez, Edgar
    Augustine, Brian
    JOURNAL OF BACTERIOLOGY, 2008, 190 (02) : 555 - 563
  • [47] Biosynthesis of polyhydroxyalkanoates using Cupriavidus necator H16 and its application for particleboard production
    Piyaporn Khunthongkaew
    Paramasivam Murugan
    Kumar Sudesh
    Jutarut Iewkittayakorn
    Journal of Polymer Research, 2018, 25
  • [48] Effect of glycine on the heterotrophic growth and [NiFe]-hydrogenase activity of Cupriavidus necator H16
    Iskandaryan, M.
    Schoknecht, J.
    Lenz, O.
    Poladyan, A.
    FEBS OPEN BIO, 2024, 14 : 223 - 224
  • [49] Molecular genetics and biochemistry of N-acetyltaurine degradation by Cupriavidus necator H16
    Denger, Karin
    Lehmann, Sabine
    Cook, Alasdair M.
    MICROBIOLOGY-SGM, 2011, 157 : 2983 - 2991
  • [50] Structure and Biosynthetic Assembly of Cupriachelin, a Photoreactive Siderophore from the Bioplastic Producer Cupriavidus necator H16
    Kreutzer, Martin F.
    Kage, Hirokazu
    Nett, Markus
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (11) : 5415 - 5422