Shaping Covalent Triazine Frameworks for the Hydrogenation of Carbon Dioxide to Formic Acid

被引:73
|
作者
Bavykina, Anastasiya V. [1 ]
Rozhko, Elena [1 ]
Goesten, Maarten G. [1 ,2 ]
Wezendonk, Tim [1 ]
Seoane, Beatriz [1 ]
Kapteijn, Freek [1 ]
Makkee, Michiel [1 ]
Gascon, Jorge [1 ]
机构
[1] Delft Univ Technol, Catalysis Engn ChemE, Julianalaan 136, NL-2628 BL Delft, Netherlands
[2] Eindhoven Univ Technol, Dept Chem Engn & Chem Mol Catalysis, Kranenveld 14, NL-5600 MB Eindhoven, Netherlands
关键词
carbon dioxide hydrogenation; catalyst shaping; covalent triazine frameworks; formic acid; CATALYTIC-HYDROGENATION; CO2; OXIDATION;
D O I
10.1002/cctc.201600419
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile one-step method to shape covalent triazine frameworks (CTFs) for catalytic applications is reported. Phase inversion of the CTF powder by using a polyimide as a binder in a microfluidic device results in the formation of composite spheres with accessible CTF porosity and a high mechanical and thermal stability. The fabricated spheres can be used to host organometallic complexes. The obtained shaped catalysts, Ir@CTF spheres, are active and fully recyclable in the direct hydrogenation of carbon dioxide into formic acid under mild reaction conditions (20 bar and 50-90 degrees C) and in the dehydrogenation of formic acid.
引用
收藏
页码:2217 / 2221
页数:5
相关论文
共 50 条
  • [31] Covalent Triazine Frameworks as Heterogeneous Catalysts for the Synthesis of Cyclic and Linear Carbonates from Carbon Dioxide and Epoxides
    Roeser, Jerome
    Kailasam, Kamalakannan
    Thomas, Arne
    CHEMSUSCHEM, 2012, 5 (09) : 1793 - 1799
  • [32] Dehydrogenation of formic acid using molecular Rh and Ir catalysts immobilized on bipyridine-based covalent triazine frameworks
    Gunasekar, Gunniya Hariyanandam
    Kim, Honggon
    Yoon, Sungho
    SUSTAINABLE ENERGY & FUELS, 2019, 3 (04): : 1042 - 1047
  • [33] Dehydrogenation of formic acid using molecular Rh and Ir catalysts immobilized on bipyridine-based covalent triazine frameworks
    Gunasekar G.H.
    Kim H.
    Yoon S.
    Sustainable Energy and Fuels, 2019, 3 (04): : 1042 - 1047
  • [34] Enhancement of formic acid production from carbon dioxide hydrogenation using metal-organic frameworks: Monte Carlo simulation study
    Wasik, Dominika O.
    Martin-Calvo, Ana
    Gutierrez-Sevillano, Juan Jose
    Dubbeldam, David
    Vlugt, Thijs J. H.
    Calero, Sofia
    CHEMICAL ENGINEERING JOURNAL, 2023, 467
  • [35] Carbon dioxide hydrogenation to formic acid in the presence of rhodium-oligoarylphosphonite catalyst systems
    N. V. Kolesnichenko
    E. V. Kremleva
    A. T. Teleshov
    N. N. Ezhova
    D. A. Ganin
    Van Te
    E. V. Slivinskii
    Petroleum Chemistry, 2006, 46 : 22 - 24
  • [36] Promoting effect of water in ruthenium-catalyzed hydrogenation of carbon dioxide to formic acid
    Yin, CQ
    Xu, ZT
    Yang, SY
    Ng, SM
    Wong, KY
    Lin, ZY
    Lau, CP
    ORGANOMETALLICS, 2001, 20 (06) : 1216 - 1222
  • [37] Kinetic Studies on the Hydrogenation of Carbon Dioxide to Formic Acid using a Rhodium Complex as Catalyst
    Dietrich, Jens
    Schindler, Siegfried
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2008, 634 (14): : 2487 - 2494
  • [38] Carbon dioxide hydrogenation to formic acid in the presence of rhodium-oligoarylphosphonite catalyst systems
    Kolesnichenko, N. V.
    Kremleva, E. V.
    Teleshov, A. T.
    Ezhova, N. N.
    Ganin, D. A.
    Te, Van
    Slivinskii, E. V.
    PETROLEUM CHEMISTRY, 2006, 46 (01) : 22 - 24
  • [39] Catalytic Hydrogenation of Carbon Dioxide to Formic Acid (vol 66, pg 223, 2014)
    Behr, A.
    Nowakowski, K.
    ADVANCES IN INORGANIC CHEMISTRY, VOL 69: POLYOXOMETALATE CHEMISTRY, 2017, 69 : 345 - 346
  • [40] THE REDUCTION OF CARBON DIOXIDE TO FORMIC ACID
    BURR, JG
    BROWN, WG
    HELLER, HE
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1950, 72 (06) : 2560 - 2562