Effect of anaesthesia-induced alterations in haemodynamics on in vivo kinetics of nitroxyl probes in electron spin resonance spectroscopy

被引:2
|
作者
Tsutsumi, Takaki [1 ]
Ide, Tomomi [1 ]
Yamato, Mayumi [2 ]
Andou, Makoto [1 ]
Shiba, Takeshi [2 ]
Utsumi, Hideo [3 ]
Sunagawa, Kenji [1 ]
机构
[1] Kyushu Univ, Grad Sch Med Sci, Dept Cardiovasc Med, Fukuoka 8128582, Japan
[2] Kyushu Univ, Dept REDOX Med Sci, Fukuoka 8128582, Japan
[3] Kyushu Univ, Grad Sch Pharmaceut Sci, Dept Biofunct Sci, Fukuoka 8128582, Japan
关键词
ESR; nitroxide; reactive oxygen species;
D O I
10.1080/10715760801986542
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although the advent of in vivo electron spin resonance (ESR) spectroscopy has allowed analysis of the redox status of living animals, whether the haemodynamic condition affects the signal decay rate remains unknown. Three kinds of haemodynamic conditions were generated by changing the anaesthetic dosage in mice. Haemodynamics was analysed (n = 6 each) and in vivo ESR was performed to measure the signal decay rates of three nitroxyl spin probes (carbamoyl-, carboxy- and methoxycarbonyl-PROXYL) at the chest and head regions (n = 6 for each condition and probe). Haemodynamic analysis revealed negative inotropic and chronotropic effects on the cardiovascular system depending on the depth of anaesthesia. Although signal decay rates differed among three probes, they were not affected by heart rate alteration. In this study we report the haemodynamics-independent signal decay rate of nitoxyl probes.
引用
收藏
页码:305 / 311
页数:7
相关论文
共 50 条