A note on the passage time of finite-state Markov chains

被引:3
|
作者
Hong, Wenming [1 ,2 ]
Zhou, Ke [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing, Peoples R China
[2] Beijing Normal Univ, Lab Math & Complex Syst, Beijing, Peoples R China
[3] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
关键词
Absorbing time; Eigenvalues; Generation functions; Laplace transforms; Markov chain; Stationary distribution; Passage time; STRONG STATIONARY TIMES; HITTING TIMES; INTERLACING EIGENVALUES; SKIP-FREE; DUALITY; PROOF;
D O I
10.1080/03610926.2014.995825
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a Markov chain with finite state {0, 1, ..., d}. We give the generation functions (or Laplace transforms) of absorbing (passage) time in the following two situations: (1) the absorbing time of state d when the chain starts from any state i and absorbing at state d; (2) the passage time of any state i when the chain starts from the stationary distribution supposed the chain is time reversible and ergodic. Example shows that it is more convenient compared with the existing methods, especially we can calculate the expectation of the absorbing time directly.
引用
收藏
页码:438 / 445
页数:8
相关论文
共 50 条
  • [41] Ordering finite-state Markov channels by mutual information
    Eckford, Andrew W.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 911 - 915
  • [42] Approximating a diffusion by a finite-state hidden Markov model
    Kontoyiannis, I.
    Meyn, S. P.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (08) : 2482 - 2507
  • [43] EQUILIBRIUM DISTRIBUTIONS OF FINITE-STATE MARKOV-PROCESSES
    HAWKES, AG
    SYKES, AM
    IEEE TRANSACTIONS ON RELIABILITY, 1990, 39 (05) : 592 - 595
  • [44] Ordering Finite-State Markov Channels by Mutual Information
    Eckford, Andrew W.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) : 3081 - 3086
  • [45] Finite-state Markov modelling for wireless cooperative networks
    Luo, Yuanqian
    Zhang, Ruonan
    Cai, Lin
    Xiang, Siyuan
    IET NETWORKS, 2014, 3 (02) : 119 - 128
  • [46] On the controller synthesis for finite-state Markov decision processes
    Kucera, Antonin
    Strazovsky, Oldrich
    FUNDAMENTA INFORMATICAE, 2008, 82 (1-2) : 141 - 153
  • [47] Finite-state Markov model for Rayleigh fading channels
    Zhang, QQ
    Kassam, SA
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1999, 47 (11) : 1688 - 1692
  • [48] On the Age of Channel Information for a Finite-State Markov Model
    Costa, Maice
    Valentin, Stefan
    Ephremides, Anthony
    2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2015, : 4101 - 4106
  • [49] A discrete-time and finite-state Markov Chain model for association football matches
    Zou, Qingrong
    Li, Qi
    Guo, Hao
    Shi, Jian
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (08) : 2476 - 2485
  • [50] Calculating Bounds on Expected Return and First Passage Times in Finite-State Imprecise Birth-Death Chains
    Lopatatzidis, Stavros
    De Bock, Jasper
    de Cooman, Gert
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS (ISIPTA '15), 2015, : 177 - 186