Gas source molecular beam epitaxy of high quality AlxGa1-xN (0≤x≤1) on Si(111)

被引:23
|
作者
Nikishin, S [1 ]
Kipshidze, G
Kuryatkov, V
Choi, K
Gherasoiu, I
de Peralta, LG
Zubrilov, A
Tretyakov, V
Copeland, K
Prokofyeva, T
Holtz, M
Asomoza, R
Kudryavtsev, Y
Temkin, H
机构
[1] Texas Tech Univ, Dept Elect Engn, Lubbock, TX 79401 USA
[2] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[3] Texas Tech Univ, Dept Phys, Lubbock, TX 79401 USA
[4] CINVESTAV, Dept Elect Engn, SIMS Lab SEES, Mexico City 07300, DF, Mexico
[5] Texas Tech Univ, Dept Elect Engn, Lubbock, TX 79401 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2001年 / 19卷 / 04期
关键词
D O I
10.1116/1.1377590
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Layers of AlxGa1-xN, with 0 less than or equal to x less than or equal to 1, were grown on Si(111) substrates by gas source molecular beam epitaxy with ammonia. We show that the initial formation of the Si-N-Al interlayer between the Si substrate and the AIN layer, at a growth temperature of 1130-1190 K, results in very rapid transition to two-dimensional growth mode of AIN. The transition is essential for subsequent growth of high quality GaN, AlxGa1-xN, and AlGaN/GaN superlattices. The undoped GaN layers have a background electron concentration of (2-3) x 10(16) cm(-3) and mobility up to (800 +/- 100) cm(2)/V s, for film thickness similar to 2 mum. The lowest electron concentration in AlxGa1-xN,with 0.2 < x < 0.6, similar to (2-3) x 10(16) cm(-3) for 0.5-0.7-mum-thick film. Cathodoluminescence and optical reflectance spectroscopy were used to study optical properties of these AlxGa1-xN layers. We found that the band gap dependence on composition can be described as E-g(x) = 3.42 + 1.21x + 1.5x(2). p-n junctions have been formed on crack-free layers of GaN with the use of Mg dopant. Light emitting diodes with peak emission wavelength at 3.23 eV have been demonstrated. (C) 2001 American Vacuum Society.
引用
收藏
页码:1409 / 1412
页数:4
相关论文
共 50 条
  • [21] Polarization induced hole doping in graded AlxGa1-xN (x=0.7 ∼ 1) layer grown by molecular beam epitaxy
    Li, Shibin
    Zhang, Ting
    Wu, Jiang
    Yang, Yajie
    Wang, Zhiming
    Wu, Zhiming
    Chen, Zhi
    Jiang, Yadong
    APPLIED PHYSICS LETTERS, 2013, 102 (06)
  • [22] GaN and AlxGa1-xN molecular beam epitaxy monitored by reflection high-energy electron diffraction
    Grandjean, N
    Massies, J
    APPLIED PHYSICS LETTERS, 1997, 71 (13) : 1816 - 1818
  • [23] Molecular Beam Epitaxy Growth and Characterization of Germanium-Doped Cubic AlxGa1-xN
    Deppe, Michael
    Henksmeier, Tobias
    Gerlach, Juergen W.
    Reuter, Dirk
    As, Donat J.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2020, 257 (04):
  • [24] Deep level defects in AlxGa1-xN/GaN heterointerfaces grown by molecular beam epitaxy
    Jeon, Hee Chang
    Park, Chan Jin
    Cho, Hoon Young
    Kang, Tae Won
    Kim, Tae Whan
    Oh, Jae Eung
    ADVANCES IN NANOMATERIALS AND PROCESSING, PTS 1 AND 2, 2007, 124-126 : 89 - +
  • [25] Crystal damage analysis of implanted AlxGa1-xN (0 ≤ x ≤ 1) by ion beam techniques
    Faye, D. Nd.
    Dobeli, M.
    Wendler, E.
    Brunner, F.
    Weyers, M.
    Magalhaes, S.
    Alves, E.
    Lorenz, K.
    SURFACE & COATINGS TECHNOLOGY, 2018, 355 : 55 - 60
  • [26] High-quality distributed Bragg reflectors based on AlxGa1-xN/GaN multilayers grown by molecular-beam epitaxy
    Fernández, S
    Naranjo, FB
    Calle, F
    Sánchez-García, MA
    Calleja, E
    Vennegues, P
    Trampert, A
    Ploog, KH
    APPLIED PHYSICS LETTERS, 2001, 79 (14) : 2136 - 2138
  • [27] Thermal conductivity of AlxGa1-xN (0 ≤ x ≤ 1) epitaxial layers
    Tran, Dat Q.
    Carrascon, Rosalia D.
    Iwaya, Motoaki
    Monemar, Bo
    Darakchieva, Vanya
    Paskov, Plamen P.
    PHYSICAL REVIEW MATERIALS, 2022, 6 (10)
  • [28] AlxGa1-xN (0≤x≤1) nanocrystalline powder by pyrolysis route
    Garcia, R.
    Srinivasan, S.
    Contreras, O. E.
    Thomas, A. C.
    Ponce, F. A.
    JOURNAL OF CRYSTAL GROWTH, 2007, 308 (01) : 198 - 203
  • [29] High quality GaN grown on Si(111) by gas source molecular beam epitaxy with ammonia
    Nikishin, SA
    Faleev, NN
    Antipov, VG
    Francoeur, S
    Grave de Peralta, L
    Seryogin, GA
    Temkin, H
    Prokofyeva, TI
    Holtz, M
    Chu, SNG
    APPLIED PHYSICS LETTERS, 1999, 75 (14) : 2073 - 2075
  • [30] Molecular beam epitaxy growth and properties of GaN, AlxGa1-xN, and AlN on GaN/SiC substrates
    Johnson, MAL
    Fujita, S
    Rowland, WH
    Bowers, KA
    Hughes, WC
    He, YW
    ElMasry, NA
    Cook, JW
    Schetzina, JF
    Ren, J
    Edmond, JA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (03): : 2349 - 2353