An inversion formula for the attenuated X-ray transformation

被引:24
|
作者
Novikov, RG [1 ]
机构
[1] Univ Nantes, CNRS, UMR 6629, Dept Math, F-44322 Nantes 03, France
关键词
D O I
10.1016/S0764-4442(01)01965-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of inversion of the attenuated X-ray transformation P-alpha is solved by an explicit formula. The problem of range characterization for P-alpha in dimension 2 is solved (on a preliminary level) by other explicit formula. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:1059 / 1063
页数:5
相关论文
共 50 条
  • [21] Transient inversion soft X-ray lasers
    Warwick, PJ
    Janulewicz, KA
    Kalachnikov, MP
    Klisnick, A
    Lewis, CLS
    Sandner, W
    Nickles, PV
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999, 5 (06) : 1447 - 1452
  • [22] UNIQUENESS FOR THE ATTENUATED X-RAY TRANSFORM IN THE PHYSICAL RANGE
    FINCH, DV
    INVERSE PROBLEMS, 1986, 2 (02) : 197 - 203
  • [23] Transient nuclear inversion by x-ray free electron laser in a tapered x-ray waveguide
    Chen, Yu-Hsueh
    Lin, Po-Han
    Wang, Guan-Ying
    Palffy, Adriana
    Liao, Wen-Te
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [24] Simple inversion formula for the small-angle X-ray scattering intensity from polydisperse systems of spheres
    Botet, Robert
    Cabane, Bernard
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2012, 45 : 406 - 416
  • [25] 3D image reconstruction from exponential x-ray projections: a completeness condition and an inversion formula
    Noo, F
    Clackdoyle, R
    Wagner, JM
    2001 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORDS, VOLS 1-4, 2002, : 1725 - 1726
  • [26] The Scherrer formula for x-ray particle size determination
    Patterson, AL
    PHYSICAL REVIEW, 1939, 56 (10): : 978 - 982
  • [27] Iterative inversion of the tensor momentum x-ray transform
    Denisiuk, Aleksander
    INVERSE PROBLEMS, 2023, 39 (10)
  • [28] Inversion of the x-ray transform for complexes of lines in Rn
    Denisiuk, Aleksander
    INVERSE PROBLEMS, 2016, 32 (02)
  • [29] Inversion of X-ray transform in spaces of odd dimensions
    Ilyushin, YA
    Terekhova, OA
    CRYSTALLOGRAPHY REPORTS, 2000, 45 (05) : 714 - 717
  • [30] Inversion of X-ray transform in spaces of odd dimensions
    Ya. A. Ilyushin
    O. A. Terekhova
    Crystallography Reports, 2000, 45 : 714 - 717