Minimax asymptotic mean-squared-error of L-estimators of scale parameter

被引:0
|
作者
Szatmari-Voicu, D. [1 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
L-estimators; minimax asymptotic mean-squared-error; robust estimation; scale parameter;
D O I
10.1080/03610920701669850
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive the AMSE (maximal asymptotic mean-squared-error) of the general class of L-estimators of scale that are location-scale equivariant and Fisher consistent. For non-normal error distributions, we determined estimators that have minimum AMSE over the subclass of (i) -interquantile ranges and (ii) mixtures of at most two -interquantile ranges. Finally, the L-estimators of scale symmetrized about the median were found to have the same AMSE as their nonsymmetrized counterparts, thus yielding the same results as in the symmetrized case.
引用
收藏
页码:709 / 721
页数:13
相关论文
共 50 条