Analysis on Benefits and Costs of Machine Learning-Based Early Hospitalization Prediction

被引:2
|
作者
Kim, Eunbi [1 ]
Han, Kap Su [2 ]
Cheong, Taesu [1 ]
Lee, Sung Woo [2 ]
Eun, Joonyup [3 ]
Kim, Su Jin [2 ]
机构
[1] Korea Univ, Sch Ind & Management Engn, Seoul 02841, South Korea
[2] Korea Univ, Coll Med, Dept Emergency Med, Seoul 02841, South Korea
[3] Korea Univ, Grad Sch Management Technol, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Predictive models; Support vector machines; Hospitals; Prediction algorithms; Radio frequency; Diseases; Costs; Emergency department; machine learning; hospitalization prediction; estimation of quantitative effects; EMERGENCY-DEPARTMENT; ADMISSIONS; CLASSIFICATION; INPATIENT; IMPACT;
D O I
10.1109/ACCESS.2022.3160742
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Overcrowding in emergency departments (EDs) has long been a problem worldwide and has serious consequences for patient satisfaction and safety. Typically, overcrowding is caused by delays in the boarding time of ED patients waiting for inpatient beds. If the hospitalization of patients is predicted early enough in EDs, inpatient beds can be prepared in advance and the boarding time can be reduced. We design machine learning-based hospitalization predictive models using data on 27,747 patients and compare the experimental results. Five predictive models are designed: 1) logistic regression, 2) XGBoost, 3) NGBoost, 4) support vector machine, and 5) decision tree models. Based on the predictive results, we estimate the quantitative effects of hospitalization predictions on EDs and wards. Using the data from the ED of a general hospital in South Korea, our experiments show that the ED length of stay of a patient can be reduced by 12.3 minutes on average and the ED can reduce the total length of stay by 333,887 minutes for a year.
引用
收藏
页码:32479 / 32493
页数:15
相关论文
共 50 条
  • [41] Machine Learning-based Corporate Socia Responsibility Prediction
    Teoh, T-T
    Heng, Q. K.
    Chia, J. J.
    Shie, J. M.
    Liaw, S. W.
    Yang, M.
    Nguwi, Y-Y
    PROCEEDINGS OF THE IEEE 2019 9TH INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) (CIS & RAM 2019), 2019, : 501 - 505
  • [42] Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors
    Sahu, Sunil K.
    Shrivastav, Anil
    Swamy, N. K.
    Dubey, Vikas
    Halwar, D. K.
    Kumar, M. Tanooj
    Rao, M. C.
    JOURNAL OF APPLIED SPECTROSCOPY, 2024, 91 (03) : 669 - 677
  • [43] Machine learning-based prediction of FeNi nanoparticle magnetization
    Williamson, Federico
    Naciff, Nadhir
    Catania, Carlos
    dos Santos, Gonzalo
    Amigo, Nicolas
    Bringa, Eduardo M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 5263 - 5276
  • [44] Machine Learning-Based Link Prediction for Hotel Network
    Sevim, Yiğit
    Orman, Günce Keziban
    Yöndem, Meltem Turhan
    IAENG International Journal of Computer Science, 2022, 49 (04)
  • [45] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [46] Machine Learning-Based Prediction of Antiferromagnetic Skyrmion Formation
    Saini, Shipra
    Shukla, Alok Kumar
    Nehete, Hemkant
    Bindal, Namita
    Kaushik, Brajesh Kumar
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (04) : 2774 - 2780
  • [47] Machine learning-based prediction models for postpartum hemorrhage
    Venkatesh, Kartik K.
    Strauss, Robert
    Grotegut, Chad
    Heine, Phillips
    Stamilio, David M.
    Menard, Kathryn
    Jelovsek, Eric
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2020, 222 (01) : S175 - S176
  • [48] Machine Learning-Based Prediction of the Martensite Start Temperature
    Wentzien, Marcel
    Koch, Marcel
    Friedrich, Thomas
    Ingber, Jerome
    Kempka, Henning
    Schmalzried, Dirk
    Kunert, Maik
    STEEL RESEARCH INTERNATIONAL, 2024, 95 (10)
  • [49] Machine Learning-based RSSI Prediction in Factory Environments
    Webber, Julian
    Suga, Norisato
    Ano, Susumu
    Jou, Yafei
    Mehbodniya, Abolfazl
    Higashimori, Toshihide
    Yano, Kazuto
    Suzuki, Yoshinori
    PROCEEDINGS OF 2019 25TH ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), 2019, : 195 - 200
  • [50] Machine learning-based approaches for disease gene prediction
    Duc-Hau Le
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2020, 19 (5-6) : 350 - 363