Hardware-aware Moving Objects Detection in Satellite Image

被引:0
|
作者
Lee, Pei-Jun [1 ]
Chiu, Zheng-Kai [1 ]
Liu, Kuang-Zhe [1 ]
Lin, Albert [2 ]
Chen, Chia-Ray [2 ]
机构
[1] Natl Chi Nan Univ, Elect Engn Dept, Puli, Taiwan
[2] Natl Space Org, Hsinchu, Taiwan
关键词
image processing; Harris detection; optical flow; Kalman filter;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes an effective way to detect the moving objects in the satellite image. Since the moving objects cannot determine first in the satellite, the corner detection algorithm is applied to obtain the feature of objects. Next, the optical flow algorithm is used to estimate motion vector of objects. In order to speed up the computation and reduce the resource of the hardware, Kalman filter is utilized after the optical flow results. According to the result, objects motion can be detected effectively.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] A survey on hardware-aware and heterogeneous computing on multicore processors and accelerators
    Buchty, Rainer
    Heuveline, Vincent
    Karl, Wolfgang
    Weiss, Jan-Philipp
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2012, 24 (07): : 663 - 675
  • [42] HAO: Hardware-aware Neural Architecture Optimization for Efficient Inference
    Dong, Zhen
    Gao, Yizhao
    Huang, Qijing
    Wawrzynek, John
    So, Hayden K. H.
    Keutzer, Kurt
    2021 IEEE 29TH ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2021), 2021, : 50 - 59
  • [43] Hardware-aware Model Architecture for Ternary Spiking Neural Networks
    Wu, Nai-Chun
    Chen, Tsu-Hsiang
    Huang, Chih-Tsun
    2023 INTERNATIONAL VLSI SYMPOSIUM ON TECHNOLOGY, SYSTEMS AND APPLICATIONS, VLSI-TSA/VLSI-DAT, 2023,
  • [44] AI Models for Edge Computing: Hardware-aware Optimizations for Efficiency
    Li, Hai ''Helen''
    2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2024,
  • [45] Hardware-Aware Bayesian Neural Architecture Search of Quantized CNNs
    Perrin, Mathieu
    Guicquero, William
    Paille, Bruno
    Sicard, Gilles
    IEEE EMBEDDED SYSTEMS LETTERS, 2025, 17 (01) : 42 - 45
  • [46] On Hardware-Aware Probabilistic Frameworks for Resource Constrained Embedded Applications
    Olascoaga, Laura I. Galindez
    Meert, Wannes
    Shah, Nimish
    Van den Broeck, Guy
    Verhelst, Marian
    FIFTH WORKSHOP ON ENERGY EFFICIENT MACHINE LEARNING AND COGNITIVE COMPUTING - NEURIPS EDITION (EMC2-NIPS 2019), 2019, : 66 - 70
  • [47] SHADHO: Massively Scalable Hardware-Aware Distributed Hyperparameter Optimization
    Kinnison, Jeffery
    Kremer-Herman, Nathaniel
    Thain, Douglas
    Scheirer, Walter
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 738 - 747
  • [48] Performance evaluation and design of hardware-aware PDE solvers:: An introduction
    Hülsemann, F
    Kowarschik, M
    APPLIED PARALLEL COMPUTING: STATE OF THE ART IN SCIENTIFIC COMPUTING, 2006, 3732 : 872 - 873
  • [49] Hardware-aware AutoML for Exploration of Custom FPGA Accelerators for RadioML
    Jentzsch, Felix
    2023 33RD INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS, FPL, 2023, : 359 - 360
  • [50] HAW: Hardware-Aware Point Selection for Efficient Winograd Convolution
    Li, Chaoran
    Jiang, Penglong
    Zhou, Hui
    Wang, Xiaofeng
    Zhao, Xiongbo
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 269 - 273