N-soliton solutions to the multi-component nonlocal Gerdjikov-Ivanov equation via Riemann-Hilbert problem with zero boundary conditions

被引:11
|
作者
Zhang, Yong [1 ,2 ]
Dong, Huan-He [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
基金
中国国家自然科学基金;
关键词
Nonlocal Gerdjikov-Ivanov equation; Eigenvalue problem; Riemann-Hilbert problem; N-soliton solution; NONLINEAR SCHRODINGER-EQUATION; TRANSFORMATION; WAVES;
D O I
10.1016/j.aml.2021.107770
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on zero curvature equation, the multi-component nonlocal reverse-time Gerdjikov-Ivanov (GI) equation is derived through nonlocal group reduction of the multi-component GI equation. Then the soliton solutions of this new multi-component nonlocal reverse-time GI equation are given with the aid of the corresponding Riemann-Hilbert problem. Especially, under the reflectless case, the N-soliton solutions of this nonlocal system are gained with a pure algebraic method, conversely, if the jump is not an identity, the solutions can only be determined by the Sokhotski-Plemelj formula. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条